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1. Introduction

The representation theory of symmetric groups is a well-studied and rich
subject with connections to the representation theory of Lie groups and Lie
algebras, as well as to symmetric function theory and combinatorics.

This monograph will assume the reader is already familiar with material
in [See17, Sections 1–14] and [See18, Section 2], although not all of it is
strictly speaking necessary. In this monograph, we will follow the program
in [FH91].

Our results are all stated over C unless otherwise noted. Sd is a symmetric
group on d letters.

2. Small Examples

For small symmetric groups, one can use the theory of the representa-
tion theory of finite groups to directly compute the character tables of Sn.
For all symmetric groups, we have the trivial representation and the sign
representation given by w.v = sgn(w)v for w ∈ Sn.

2.1. Example. For G = S3, since there are 3 conjugacy classes, there is
only one missing representation of dimension 2. Thus, giving the remaining
character table values by using the character orthogonality relations.

(1) (12) (123)
χ1 1 1 1
χ2 1 -1 1
θ 2 0 -1

3. Characters of Symmetric Groups Representations

In this section, we follow the program of [Man98, Section 1.6] to develop

some general character theory for Sn. Let R(n) be the free Z-module gen-
erated by the irreducible characters of Sn with R(0) = Z.

3.1. Proposition. The direct sum

R =
⊕
n≥0

R(n)
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has the structure of an associative and commutative graded ring under the
product, for ϕ ∈ R(m) and ψ ∈ R(n),

ϕ · ψ = Ind
Sm+n

Sm×Sn
(ϕ× ψ)

3.2. Definition. For w ∈ Sn, let λ(w) be the partition of size n encoding
the cycle type of w. Then, the characteristic map ch: R→ Λ⊗ZC is defined
by, for ϕ ∈ R(n),

ch(ϕ) :=
1

n!

∑
w∈Sn

ϕ(w)pλ(w)

where pλ(w) is the power sum symmetric function.

3.3. Theorem. [Man98, Proposition 1.6.3] The characteristic map defines a
graded ring isomorphism from the ring R of the characters of the symmetric
group to the ring Λ of symmetric functions.

3.4. Lemma.
ch(ϕ) =

∑
|λ|=n

z−1
λ ϕλpλ

where ϕλ is the value of ϕ on the conjugacy class of cycle type λ and zλ is
the cardinality of the centralizer of an element associated to the conjugacy
class associated to λ, that is, zλ =

∏
i i

mimi! where mi is the multiplicity of
i in λ.

Proof of Lemma. First we break up the sum∑
w∈Sn

ϕ(w)pλ(w) =
∑
|λ|=n

∑
w of cycle type λ

ϕ(w)pλ

and, since characters are class functions, we may define ϕλ as ϕ(w) for any
w with cycle type λ. Finally, the size of the conjugacy class must be n!

zλ
by

the orbit-stabilizer theorem, so we get∑
|λ|=n

∑
w of cycle type λ

ϕ(w)pλ =
∑
|λ|=n

n!

zλ
ϕλpλ

giving us the desired formula after multiplying both sides by n!. □

3.5. Lemma. ch is an isometry, that is

(ϕ, ψ) = ⟨ch(ϕ), ch(ψ)⟩
where (·, ·) is the inner product on characters and ⟨·, ·⟩ is the Hall-inner
product on symmetric functions. In particular, this means ch is injective.

Proof of Lemma. We check, for ϕ, ψ ∈ R(n),

⟨ch(ϕ), ch(ψ)⟩ = ⟨
∑
λ⊢n

z−1
λ ϕλpλ,

∑
µ⊢n

z−1
µ ψµpµ⟩

=
∑
λ⊢n

∑
µ⊢n

ϕλψµz
−1
λ z−1

µ ⟨pλ, pµ⟩
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=
∑
λ⊢n

∑
µ⊢n

ϕλψµz
−1
λ z−1

µ zλδλ,µ

=
∑
λ⊢n

ϕλψλz
−1
λ

=
1

n!

∑
w∈Sn

ϕ(w)ψ(w)

= (ϕ, ψ)

□

Proof of Theorem. First, we must define the class function p : Sn → Λn via

p(w) = pλ(w)

Then, we can rephrase

ch(ϕ) = (ϕ, p)

We check that

ch(ϕ · ψ) = (ϕ · ψ, p)

= (Ind
Sm+n

Sm×Sn
(ϕ× ψ), p)

= (ϕ× ψ,Res
Sm+n

Sm×Sn
p) by Frobenius Reciprocity

=
1

m!n!

∑
(w,w′)∈Sm×Sn

(ϕ× ψ)(ww′)p(ww′) by definition of (·, ·)

=
1

m!n!

∑
w∈Sm,w′×Sn

ϕ(w)ψ(w′)pwpw′

=

(
1

m!

∑
w∈Sm

ϕ(w)pw

)(
1

n!

∑
w∈Sn

ψ(w)pw

)
= ch(ϕ) ch(ψ)

Now, consider the trivial character 1n ∈ R(n) of Sn. We compute

ch(1n) =
∑
λ⊢n

z−1
λ pλ = hn

where the hn is the homogeneous symmetric polynomial and the equality
comes from an argument on generating functions (see [See18, Section 2]).
Furthermore, since Λ is algebraically generated by {hn}n∈N, it must be that
Λ is in the image of ch. Furthermore, since ch is also injective, it must be
that ch is an isomorphism. □

It bears repeating from the proof above.

3.6. Corollary (Corollary of proof). ch(1n) = hn for 1n the irreducible
character of the trivial representation of Sn.
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3.7. Proposition. We have that, under the characteristic map, the elemen-
tary functions en correspond to the character of the sign representation of
Sn, say ϵ.

Proof. By our alternate characterization of the characteristic map,

ch(ϵ) =
∑
λ⊢n

z−1
λ ϵ(λ)pλ = en

where the last equality follows from an argument on generating functions
for pn and en (see [See18]). □

3.8. Proposition. The irreducible characters of Sn are given by {ch−1(sλ) |
λ ⊢ d}.

Proof. Recall that the irreducible characters of a group G form an orthonor-
mal basis for the set of class functions of G under the inner product (·, ·),
and since the set of class functions is a Z-module, this basis is unique. Since
ch is an isometry and the Schur functions sλ form an orthonormal basis of
Λ under the Hall-inner product, it must be that {ch−1(sλ) | λ ⊢ n} is the
set of all irreducible characters of Sn up to sign. We will later show they
are all positive when evaluated on 1 ∈ Sn. □

3.9. Definition. We will denote the irreducible character χλ := ch−1(sλ).

3.10. Proposition. χλ = det(1λi−i+j)1≤i,j≤n where 1λi−i+j is the trivial
character for Sλi−i+j (and 0 if λi − i+ j ≤ 0).

Proof. The Jacobi-Trudi identity tells us that, for λ ⊢ n,

sλ = det(hλi−i+j)1≤i,j≤n

From above, we have ch(1n) = hn and so, apply ch−1 to both sides, we get
our result. □

3.11. Theorem (Frobenius Character Formula). [Man98, 1.6.6] Given a
partition µ ⊢ n,

pµ =
∑
λ⊢n

χλ(µ)sλ

where χλ(µ) = χλ(w) for w ∈ Sn of cycle type µ.

Proof. First, we observe that ch−1(pµ) = zµfµ where

fµ(w) =

{
1 if w has cycle type µ

0 else

Next, by the fact that ch is an isometry,

⟨sλ, pµ⟩ = (χλ, zµfµ) =
1

n!

∑
w∈Sn

χλ(w)zµfµ(w) =
zµ
n!

∑
w with cycle type µ

χλ(w) = χλ(µ)
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since the size of the conjugacy class is n!
zµ
. Therefore, for 1 ∈ Sn,

χλ(1) = ⟨sλ, p1n⟩ = ⟨sλ, h1n⟩ = Kλ,1n > 0

since Kλ,1n is the number of standard tableaux of shape λ. □

3.12. Corollary (Corollary of proof). [Man98, Corollary 1.6.8] The dimen-
sion of the irreducible representation of Sn with character χλ is equal to the
number of standard tableaux of shape λ.

3.13. Corollary. We can invert the Frobenius character formula to get

sλ =
∑
µ⊢n

z−1
µ χλ(µ)pµ

Proof. We know from our arguments proving the Frobenius Character For-
mula that

sλ = ch(χλ) =
∑
µ⊢n

z−1
µ χλ(µ)pµ

where the second equality follows from our alternate characterization of the
characteristic map. □

4. Explicitly Constructing Representations

Given our knowledge of character theory above, let us systematically con-
struct some representations.

4.1. Definition. Given a vector space V let Sd act on V ⊗d = V ⊗ · · · ⊗
V by permuting the terms of the tensor product. In other words, for
v1, v2, . . . , vn ∈ V (not necessarily distinct), let

w.(v1 ⊗ · · · ⊗ vn) = vw(1) ⊗ · · · ⊗ vw(n)

Given the symmetric group action defined above, we can also induce the
action on Symr V and ∧rV .

4.2. Proposition. Given the action of Sr on V ⊗r, we get that

(a) Symr V is the trivial representation with character hr under the char-
acteristic map.

(b) ∧rV is the sign representation with character er under the charac-
teristic map.

Proof. First, consider Symr V as a representation of Sr. Then, any w ∈ Sr

permutes the terms of v1⊗· · ·⊗vd, but this yields the same element by defi-
nition of the symmetric power. Thus, this must be the trivial representation
of Sr with character hr.

Similarly, if we consider ∧rV as a representation of Sr, w ∈ Sr permutes
the terms of v1 ∧ · · · ∧ vr, but then

vw(1) ∧ · · · ∧ vw(r) = sign(w)(v1 ∧ · · · ∧ vr)
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by definition of the exterior power. Thus, we get that ∧rV is the sign
representation of Sr with character er. □

4.3. Corollary. Given Sr1 × · · · ×Srℓ, then

Symr1(V )⊗ · · · ⊗ Symrℓ(V )

is the trivial representation and

∧r1(V )⊗ · · · ⊗ ∧rℓ(V )

is the sign representation.

Proof. The first assertion follows immediately from the action of the group
on this symmetric power; the action must be trivial. Similarly, from the
above, it is almost immediate that

(w1, . . . , wr).(u1 ∧ · · · ∧ ur1 ⊗ v1 ∧ · · · ∧ vr2 ⊗ · · · ⊗ w1 ∧ · · · ∧ wrℓ)

= (sign(w1) sign(w2) · · · sign(wr))(u1 ∧ · · · ∧ ur1 ⊗ v1 ∧ · · · ∧ vr2 ⊗ · · · ⊗ w1 ∧ · · · ∧ wrℓ)

□

4.4. Definition. For a partition λ = (λ1, . . . , λℓ), let Sλ := Sλ1 ×· · ·×Sλℓ
.

Then, we define induced modules

Hλ := IndSr
Sλ

(ρ1) Eλ′ := IndSr
Sλ′

(ρsign)

where ρ1 is the trivial representation and ρsign is the sign representation.

4.5. Proposition. Given a partition λ, the characterstic map applied to the
character of Hλ gives hλ and the characteristic map applied to the character
of Eλ′ gives eλ′.

Proof. Let χλi
be the character of the trivial representation for Sλi

. Then,

consider that the character of Hλ is IndSr
Sλ

(χλ1 × · · · × χλℓ
) = χλ1 · · ·χλℓ

.
Thus, since the characteristic map is a ring isomorphism,

ch(χλ1 · · ·χλℓ
) = ch(χλ1) · · · ch(χλℓ

) = hλ1 · · ·hλℓ
= hλ

A nearly identical argument gives the result for Eλ′ . □

5. Young Symmetrizers and Specht Modules

The Frobenius character formula suggests that we will need to have the
symmetric group act on polynomials associated to standard tableaux in
order to explicitly realize the irreducible representations of Sn. There are a
few ways to do this, one of which we expand on below, following [FH91].

5.1.Definition. Given a tableau T of shape λ labelled with integers 1, . . . , d,
we define subgroups of Sd

RT := {w ∈ Sd | w preserves each row of T}
and

CT := {w ∈ Sd | w preserves each column of T}
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Furthermore, we define elements of CSd, the row stabalizer

aT :=
∑
w∈RT

ew

and the column stabalizer

bT :=
∑
w∈CT

sgn(w)ew

If T∗ is the canonical standard tableau of shape λ, we define

Rλ := RT∗ , Cλ := CT∗ , aλ := aT∗ , bλ := bT∗

5.2. Proposition. Given that action of Sd on V ⊗d via

w.(v1 ⊗ · · · ⊗ vd) = vw(1) ⊗ · · · ⊗ vw(d)

that is, w permutes the terms in v1 ⊗ · · · ⊗ vd, we observe

(a)

im(aλ) = Symλ1 V ⊗ Symλ2 V ⊗ · · · ⊗ Symλℓ V

(b)

im(bλ) = ∧λ′
1V ⊗ ∧λ′

2V ⊗ · · · ⊗ ∧λ′
kV

where λ′ = (λ′1, . . . , λ
′
k) is the conjugate partition to λ.

Proof. We observe, for p ∈ Rλ

p · aλ = aλ · p = aλ

which follows almost immediately. Similarly, for q ∈ Cλ, we have

q · bλ = bλ · q = bλ

□

5.3. Definition. We define the Young symmetrizer to be the element

cλ := aλbλ

5.4. Example. If λ = (d), then

c(d) = a(d) =
∑
w∈Sd

ew

and when λ = (1, . . . , 1), then

c(1,...,1) = b(1,...,1) =
∑
w∈Sd

sgn(w)ew

Finally, for λ = (2, 1), we have

c(2,1) = (e1 + e(12))(e1 − e(13)) = 1 + e(12) − e(13) − e(132)

We will compute many other examples as needed.
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5.5. Proposition. The set {cλ}λ⊢d form a set of seminormal idempotents
up to a scalar. That is,

cλcµ = δλ,µnλcλ

for some nλ ∈ C \ {0}.

Proof. □

5.6. Theorem. Given a partition λ,

(a) c2λ = nλcλ, that is, cλ is a scalar multiple of an idempotent.
(b) CSd · cλ is an irreducible representation of Sd, say Vλ.
(c) Every irreducible representation of Sd can be obtained in this way.
(d) Since conjugacy classes in Sd are given by cycle type, which is en-

coded in a partition, this sets up a one-to-one correspondence between
conjugacy classes of Sd and irreducible representations of Sd.

6. Two Sides of the Same Coin

Using symmetric function theory, we prove some results about the char-
acters on Sn.

6.1. Theorem (Branching Rule). Let µ ⊢ n. Then,

IndSn
Sn−1

χµ =
∑

λ=µ+an addable cell

χλ

Similarly, λ ⊢ n. Then,

ResSn
Sn−1

χλ =
∑

µ=λ−a removable cell

χµ

Proof. The first statement follows from the Pieri rule. Namely,

ch(IndSn
Sn−1×1(χµ×χ(1))) = ch(χµ) ch(χ(1)) = sµs1 = h1sµ =

∑
λ=µ+horizontal 1-strip

sλ

Thus giving us the result after taking ch−1. The second result follows from
Frobenius reciprocity. Namely,

⟨IndSn
Sn−1

χµ, χλ⟩ = ⟨χµ,Res
Sn
Sn−1

χλ⟩

□

6.2. Theorem (Young’s Rule). If λ ⊢ n, then the multiplicity of Sµ in Hλ

is equal to Kµλ

Proof. We know

hλ =
∑
µ

Kµλsµ =⇒ Kµ,λ = ⟨hλ, sµ⟩ = (Hλ, S
µ)

□
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6.3. Theorem (Murnaghan-Nakayama Rule). Given partitions λ, µ ⊢ n, the
irreducible character χλ of Sn has value on the conjugacy class of cycle type
µ,

χλ(µ) =
∑
T

(−1)ht(T)

where the sum is over all multi-ribbon tableaux with shape λ and weight µ.

Proof. If we take∑
λ⊢n

χλ(µ)sλ = pµ1 · · · pµℓ
=

∑
T of weight µ

(−1)ht(T)ssh(T)

where T is a multi-ribbon tableau. (A ribon of length µ1 labeled 1, a ribbon
of length µ2 labeled 2, and so on). Since the Schurs are a basis, gives

χλ(µ) =
∑

T of weight µ and shape λ

(−1)ht(T)

□
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