
Basic Examples and Feature Engineering

George H. Seelinger

ghseeli@umich.edu

ICERM: Machine Learning Seminar

28 October 2025

Goals

Learn basics of decision tree learning.

Explore some challenges to using machine learning to mathematical
problems.

Encounter many difficulties, negative results, and arguably trivial
results.

“Good Old Fashioned Machine Learning”

Supervised learning:

Real world data with inputs (or “features”) X and outputs (or
“labels”) y.

In practice, split X = Xtrain ⊔ Xtest and matching y = ytrain ⊔ ytest.

Learn function f that “fits” f (x) = y from the pair Xtrain, ytrain.

Ideally, for new input x with unknown output y , f (x) = y (or at least
|f (x)− y | is small).

Test ideal situation using withheld pair Xtest, ytest.

Real World Toy Example

Problem: given a Titanic passenger with some information about them
(“features”), predict whether or not they survived.

This data has noise! Impossible to perfectly predict survivability off
knowledge of individual passenger available prior to April 15, 1912.

However, there can still be detectable trends.

We will use data from Kaggle.

Decision Trees

Accuracy on withheld test data: 79%

Decision Trees

Decision Trees

Some pros:

Relatively easy to understand and interpret.

Input data requires little preprocessing.

Some cons:

Highly susceptible to overfitting.

Cannot detect relationships between features.

Non-robust: small changes in training data can cause large changes in
tree.

Solution 1: Random Forests

Instead of training a tree, train a forest!

For any given classification problem, have every tree vote and take
the majority vote.

Harder to visualize, but can still measure importance of features.

· · ·

Solution 2: Feature engineering

If you think there is some relationship between features, you can
manually try to add one. (“Derived feature”)

Titanic data lists “# siblings or spouses” as one feature and “#
parents or children” as another. Perhaps total family size is more
relevant.

Titanic data lists every passenger’s name, including their “Title”
(e.g., Mr, Master, Miss, Mrs, etc.). This might be useful to extract
for the model.

Decision tree accuracy with additional features 79% → 80%

Random forest accuracy with additional features 80% → 82%

Solution 2: Feature engineering

If you think there is some relationship between features, you can
manually try to add one. (“Derived feature”)

Titanic data lists “# siblings or spouses” as one feature and “#
parents or children” as another. Perhaps total family size is more
relevant.

Titanic data lists every passenger’s name, including their “Title”
(e.g., Mr, Master, Miss, Mrs, etc.). This might be useful to extract
for the model.

Decision tree accuracy with additional features 79% → 80%

Random forest accuracy with additional features 80% → 82%

Solution 3: Gradient boosting

XGBoost (and other gradient boosted tree libraries) use more
advanced techniques to train a decision tree forest in a more
sophisticated way to get even better models that are not as likely to
overfit.

Like random forests, some explainability is lost.

Mathematical Data

Unlike real world data, mathematical data (often) has no noise.

However, decision trees are designed to find signal in noise.

In general, decision tree learning algorithms are designed for
interpolating from data, not extrapolating from data.

Mathematical Example 1: is this number even or odd?

E.g., let X = first N non-negative integers and yi =0 if i is even, 1 if
i is odd.

Training using X as given leads to terrible performance on decision
tree.

Feature engineering: rewrite X as binary sequences =⇒ decision tree
model (easily) scores 100%.

Is this number even or odd? (Binary input)

Decision tree (binary input)

Neural network (binary input)

https://stats.stackexchange.com/questions/161189/train-a-neural-
network-to-distinguish-between-even-and-odd-numbers

https://stats.stackexchange.com/questions/161189/train-a-neural-network-to-distinguish-between-even-and-odd-numbers
https://stats.stackexchange.com/questions/161189/train-a-neural-network-to-distinguish-between-even-and-odd-numbers

Mathematical Example 2: Horn problem

Schur polynomials sλ(x1, . . . , xn) form a basis of symmetric
polynomials as λ varies over partitions:
λ = (λ1 ≥ · · · ≥ λn ≥ 0) ∈ Zn

≥0.

Littlewood-Richardson coefficients cνλ,µ:

sλsµ =
∑
ν

cνλ,µsν

for cνλµ ∈ Z≥0.

Horn problem: determine when cνλ,µ ̸= 0 (support).

Remark: this is a mathematically solved and well understood problem.

Can we see how ML models could learn the solution?

Horn problem

Solution (Klyachko, 1998, Knutson-Tao, 1999)

cνλµ ̸= 0 ⇐⇒
∑

i∈I λi +
∑

j∈J µj ≤
∑

k∈K νk for I , J,K ⊆ {1, . . . , n}
satisfying |I | = |J| = |K | and |λ|+ |µ| = |ν|.

Additional resource for Algebraic Combinatorics Data

Algebraic Combinatorics Dataset Repository:
https://github.com/pnnl/ML4AlgComb

https://github.com/pnnl/ML4AlgComb

