K-theoretic Catalan functions

George H. Seelinger (joint with J. Blasiak and J. Morse)

CAGE

ghs9ae@virginia.edu

6 February 2020

- Schubert calculus
- Catalan functions: a new approach to old problems
- K-theoretic Catalan functions

Overview of Schubert Calculus Combinatorics

Geometric problem

Find $c_{\lambda\mu}^{\nu} = \#$ of points in intersection of subvarieties in a variety X.

Overview of Schubert Calculus Combinatorics

Geometric problem

Find $c_{\lambda\mu}^{\nu} = \#$ of points in intersection of subvarieties in a variety X.

Cohomology

Schubert basis $\{\sigma_{\lambda}\}$ for $H^*(X)$ with property $\sigma_{\lambda} \cup \sigma_{\mu} = \sum_{\nu} c^{\nu}_{\lambda\mu} \sigma_{\nu}$

Overview of Schubert Calculus Combinatorics

Geometric problem

Find $c_{\lambda\mu}^{\nu} = \#$ of points in intersection of subvarieties in a variety X.

Cohomology

Schubert basis $\{\sigma_{\lambda}\}$ for $H^{*}(X)$ with property $\sigma_{\lambda} \cup \sigma_{\mu} = \sum_{\nu} c_{\lambda\mu}^{\nu} \sigma_{\nu}$

Representatives

Special basis of polynomials $\{f_{\lambda}\}$ such that $f_{\lambda} \cdot f_{\mu} = \sum_{\nu} c_{\lambda\mu}^{\nu} f_{\nu}$

George H. Seelinger (UVA)

Combinatorial study of $\{f_{\lambda}\}$ enlightens the geometry (and cohomology).

Goal

Identify $\{f_{\lambda}\}$ in explicit (simple) terms amenable to calculation and proofs.

Classical Schubert Calculus

Geometric problem

Find $c_{\lambda\mu}^{\nu} = \#$ of points in intersection of Schubert varieties $\{X_{\lambda}\}_{\lambda \subseteq (n^m)}$ in variety X = Gr(m, n).

Classical Schubert Calculus

Geometric problem

Find $c_{\lambda\mu}^{\nu} = \#$ of points in intersection of Schubert varieties $\{X_{\lambda}\}_{\lambda \subseteq (n^m)}$ in variety X = Gr(m, n).

Cohomology

Schubert basis $\{\sigma_{\lambda}\}_{\lambda\subseteq(n^m)}$ for $H^*(X)$ with property $\sigma_{\lambda}\cup\sigma_{\mu}=\sum_{\nu}c_{\lambda\mu}^{\nu}\sigma_{\nu}$

Classical Schubert Calculus

Geometric problem

Find $c_{\lambda\mu}^{\nu} = \#$ of points in intersection of Schubert varieties $\{X_{\lambda}\}_{\lambda \subseteq (n^m)}$ in variety X = Gr(m, n).

Cohomology

Schubert basis $\{\sigma_{\lambda}\}_{\lambda \subseteq (n^m)}$ for $H^*(X)$ with property $\sigma_{\lambda} \cup \sigma_{\mu} = \sum_{\nu} c_{\lambda\mu}^{\nu} \sigma_{\nu}$

\downarrow

Representatives

Special basis of Schur polynomials $\{s_{\lambda}\}$ such that $s_{\lambda} \cdot s_{\mu} = \sum_{\nu} c_{\lambda\mu}^{\nu} s_{\nu}$ for Littlewood-Richardson coefficients $c_{\lambda\mu}^{\nu}$.

• $X = Fl_n(\mathbb{C}) = \{V_0 \subseteq V_1 \subseteq \cdots \subseteq V_n \mid \dim V_i = i\}$

• $X = Fl_n(\mathbb{C}) = \{V_0 \subseteq V_1 \subseteq \cdots \subseteq V_n \mid \dim V_i = i\}$

• Decomposes into Schubert varieties indexed by $w \in S_n$.

- $X = Fl_n(\mathbb{C}) = \{V_0 \subseteq V_1 \subseteq \cdots \subseteq V_n \mid \dim V_i = i\}$
- Decomposes into Schubert varieties indexed by $w \in S_n$.
- *H*^{*}(*Fl_n*(ℂ)) supported by Schubert polynomials 𝔅_w ∈ ℤ[x₁,...,x_n] (Not necessarily symmetric!)

- $X = FI_n(\mathbb{C}) = \{V_0 \subseteq V_1 \subseteq \cdots \subseteq V_n \mid \dim V_i = i\}$
- Decomposes into Schubert varieties indexed by $w \in S_n$.
- *H*^{*}(*Fl_n*(ℂ)) supported by Schubert polynomials 𝔅_w ∈ ℤ[x₁,...,x_n] (Not necessarily symmetric!)

Open Problem

Structure constants $\mathfrak{S}_w\mathfrak{S}_u = c_{wu}^v\mathfrak{S}_v$ are combinatorially unknown.

There are many variations on classical Schubert calculus of the Grassmannian (Type A).

There are many variations on classical Schubert calculus of the Grassmannian (Type A).

Theory	f_{λ}
(Co)homology of Grassmannian	Schur functions
(Co)homology of flag variety	Schubert polynomimals
Quantum cohomology of flag variety	Quantum Schuberts
(Co)homology of Types BCD Grassmannian	Schur-P and Q functions
(Co)homology of affine Grassmannian	(dual) k-Schur functions
K-theory of Grassmannian	Grothendieck polynomials
K-homology of affine Grassmannian	K-k-Schur functions

There are many variations on classical Schubert calculus of the Grassmannian (Type A).

Theory	f_{λ}
(Co)homology of Grassmannian	Schur functions
(Co)homology of flag variety	Schubert polynomimals
Quantum cohomology of flag variety	Quantum Schuberts
(Co)homology of Types BCD Grassmannian	Schur-P and Q functions
(Co)homology of affine Grassmannian	(dual) k-Schur functions
K-theory of Grassmannian	Grothendieck polynomials
K-homology of affine Grassmannian	K-k-Schur functions
And many more!	•

• $QH^*(Fl_{k+1})$ quantum deformation of $H^*(Fl_{k+1})$.

- $QH^*(Fl_{k+1})$ quantum deformation of $H^*(Fl_{k+1})$.
- Supported by quantum Schubert polynomials \mathfrak{S}_w^Q .

- $QH^*(Fl_{k+1})$ quantum deformation of $H^*(Fl_{k+1})$.
- Supported by quantum Schubert polynomials \mathfrak{S}^Q_w .
- Peterson isomorphism

$$egin{aligned} \Phi \colon \mathcal{Q}H^*(\mathit{Fl}_{k+1}) & o H_*(\mathit{Gr}_{\mathit{SL}_{k+1}})_{\mathit{loc}} \ & \mathfrak{S}^{\mathcal{Q}}_w \mapsto rac{s^{(k)}_\lambda}{\prod_{i \in \mathit{Des}(w)} au_i} \end{aligned}$$

where $s_{\lambda}^{(k)}$ is a *k*-Schur function.

- $QH^*(Fl_{k+1})$ quantum deformation of $H^*(Fl_{k+1})$.
- Supported by quantum Schubert polynomials \mathfrak{S}^Q_w .
- Peterson isomorphism

where $s_{\lambda}^{(k)}$ is a k-Schur function.

Upshot

Computations for (quantum) Schubert polynomials can be moved into symmetric functions.

•
$$s_{\lambda}^{(k)}$$
 for $\lambda_1 \leq k$ a basis for $\mathbb{Z}[s_1, s_2, \dots, s_k]$ (Lapointe et al., 2003).

- $s_{\lambda}^{(k)}$ for $\lambda_1 \leq k$ a basis for $\mathbb{Z}[s_1, s_2, \dots, s_k]$ (Lapointe et al., 2003).
- Schubert representatives for $H_*(Gr_{SL_{k+1}})$ (Lam, 2008).

- $s_{\lambda}^{(k)}$ for $\lambda_1 \leq k$ a basis for $\mathbb{Z}[s_1, s_2, \dots, s_k]$ (Lapointe et al., 2003).
- Schubert representatives for $H_*(Gr_{SL_{k+1}})$ (Lam, 2008).
- Has a tableaux formulation and Pieri rule: $s_{1'}s_{\lambda}^{(k)} = \sum_{\mu}a_{\lambda\mu}s_{\mu}^{(k)}$

- $s_{\lambda}^{(k)}$ for $\lambda_1 \leq k$ a basis for $\mathbb{Z}[s_1, s_2, \dots, s_k]$ (Lapointe et al., 2003).
- Schubert representatives for $H_*(Gr_{SL_{k+1}})$ (Lam, 2008).
- Has a tableaux formulation and Pieri rule: s₁, s_λ^(k) = Σ_μ a_{λμ}s_μ^(k)
 s_λ^(k) = s_λ as k → ∞.

- $s_{\lambda}^{(k)}$ for $\lambda_1 \leq k$ a basis for $\mathbb{Z}[s_1, s_2, \dots, s_k]$ (Lapointe et al., 2003).
- Schubert representatives for $H_*(Gr_{SL_{k+1}})$ (Lam, 2008).
- Has a tableaux formulation and Pieri rule: s₁, s_λ^(k) = Σ_μ a_{λμ}s_μ^(k)
 s_λ^(k) = s_λ as k → ∞.
- Branching with positive coefficients (Lam et al., 2010):

- $s_{\lambda}^{(k)}$ for $\lambda_1 \leq k$ a basis for $\mathbb{Z}[s_1, s_2, \dots, s_k]$ (Lapointe et al., 2003).
- Schubert representatives for $H_*(Gr_{SL_{k+1}})$ (Lam, 2008).
- Has a tableaux formulation and Pieri rule: s₁, s_λ^(k) = Σ_μ a_{λμ}s_μ^(k)
 s_λ^(k) = s_λ as k → ∞.
- Branching with positive coefficients (Lam et al., 2010):

• Has geometric interpretation.

- $s_{\lambda}^{(k)}$ for $\lambda_1 \leq k$ a basis for $\mathbb{Z}[s_1, s_2, \dots, s_k]$ (Lapointe et al., 2003).
- Schubert representatives for $H_*(Gr_{SL_{k+1}})$ (Lam, 2008).
- Has a tableaux formulation and Pieri rule: s₁, s_λ^(k) = Σ_μ a_{λμ}s_μ^(k)
 s_λ^(k) = s_λ as k → ∞.
- Branching with positive coefficients (Lam et al., 2010):

- Has geometric interpretation.
- No combinatorial interpretation of branching coefficients.

- $s_{\lambda}^{(k)}$ for $\lambda_1 \leq k$ a basis for $\mathbb{Z}[s_1, s_2, \dots, s_k]$ (Lapointe et al., 2003).
- Schubert representatives for $H_*(Gr_{SL_{k+1}})$ (Lam, 2008).
- Has a tableaux formulation and Pieri rule: s₁, s_λ^(k) = Σ_μ a_{λμ}s_μ^(k)
 s_λ^(k) = s_λ as k → ∞.
- Branching with positive coefficients (Lam et al., 2010):

- Has geometric interpretation.
- No combinatorial interpretation of branching coefficients.
- Definition with *t* important for Macdonald polynomials.

- $s_{\lambda}^{(k)}$ for $\lambda_1 \leq k$ a basis for $\mathbb{Z}[s_1, s_2, \dots, s_k]$ (Lapointe et al., 2003).
- Schubert representatives for $H_*(Gr_{SL_{k+1}})$ (Lam, 2008).
- Has a tableaux formulation and Pieri rule: $s_{1'}s_{\lambda}^{(k)} = \sum_{\mu} a_{\lambda\mu}s_{\mu}^{(k)}$
- $s_{\lambda}^{(k)} = s_{\lambda}$ as $k \to \infty$.
- Branching with positive coefficients (Lam et al., 2010):

- Has geometric interpretation.
- No combinatorial interpretation of branching coefficients.
- Definition with t important for Macdonald polynomials.
- Many definitions. A new one makes proofs easier!

George H. Seelinger (UVA)

- Schubert calculus
- Catalan functions: a new approach to old problems
- K-theoretic Catalan functions

• Raising operators R_{i,i} act on diagrams

• Raising operators R_{i,i} act on diagrams

• Extend action to a symmetric function f_{λ} by $R_{i,j}(f_{\lambda}) = f_{\lambda + \epsilon_i - \epsilon_j}$.

• Raising operators R_{i,i} act on diagrams

• Extend action to a symmetric function f_{λ} by $R_{i,j}(f_{\lambda}) = f_{\lambda + \epsilon_i - \epsilon_j}$.

• For $h_{\lambda} = s_{\lambda_1} \cdots s_{\lambda_r}$, we have the Jacobi-Trudi identity

$$s_\lambda = \prod_{i < j} (1 - R_{ij}) h_\lambda$$

• Raising operators $R_{i,j}$ act on diagrams

Extend action to a symmetric function f_λ by R_{i,j}(f_λ) = f<sub>λ+ε_i-ε_j.
For h_λ = s_{λ1} ··· s_{λr}, we have the Jacobi-Trudi identity
</sub>

$$s_\lambda = \prod_{i < j} (1 - R_{ij}) h_\lambda$$

$$s_{22} = (1 - R_{12})h_{22} = h_{22} - h_{31}$$

$$s_{211} = (1 - R_{12})(1 - R_{23})(1 - R_{13})h_{211}$$

$$= h_{211} - h_{301} - h_{220} - h_{310} + h_{310} + \underbrace{h_{32-1}}_{=0} + h_{400} - \underbrace{h_{41-1}}_{=0}$$

some terms cancel

George H. Seelinger (UVA)

Gives definition for Schur function indexed by any integer vector $\alpha \in \mathbb{Z}^{\ell}$.

Gives definition for Schur function indexed by any integer vector $\alpha \in \mathbb{Z}^{\ell}.$ Straightening:

$$s_lpha = \prod_{i < j} (1 - R_{ij}) h_lpha = egin{cases} \pm s_\lambda & ext{for a partition } \lambda \ 0 \end{bmatrix}$$
Gives definition for Schur function indexed by any integer vector $\alpha \in \mathbb{Z}^{\ell}$. Straightening:

$$s_lpha = \prod_{i < j} (1 - R_{ij}) h_lpha = egin{cases} \pm s_\lambda & ext{for a partition } \lambda \ 0 \end{bmatrix}$$

For $\langle s_{1^r}^\perp s_\lambda, s_\mu
angle = \langle s_\lambda, s_{1^r} s_\mu
angle$,

$$s_{1^r}^{\perp} s_{\lambda} = \sum_{S \subseteq [1,\ell], |S| = r} s_{\lambda - \epsilon_S}$$

 $s_{1^2}^{\perp} s_{333} = s_{322} + s_{232} + s_{223}$

A root ideal Ψ of type $A_{\ell-1}$ positive roots: given by Dyck path (lattice path above diagonal).

$$\begin{split} \Psi &= \text{Roots above Dyck path} \\ \Delta^+_\ell \backslash \Psi &= \text{Non-roots below} \end{split}$$

A root ideal Ψ of type $A_{\ell-1}$ positive roots: given by Dyck path (lattice path above diagonal).

$$\begin{split} \Psi &= \text{Roots above Dyck path} \\ \Delta^+_\ell \backslash \Psi &= \text{Non-roots below} \end{split}$$

Catalan Function (Chen, 2010; Panyushev, 2010; Blasiak et al., 2019)

For Ψ and $\gamma \in \mathbb{Z}^{\ell}$

$$H(\Psi;\gamma)(x) = \prod_{(i,j)\in \Delta^+_\ell\setminus \Psi} (1-R_{ij})h_\gamma(x) \; .$$

A root ideal Ψ of type $A_{\ell-1}$ positive roots: given by Dyck path (lattice path above diagonal).

$$\begin{split} \Psi &= \text{Roots above Dyck path} \\ \Delta^+_\ell \backslash \Psi &= \text{Non-roots below} \end{split}$$

Catalan Function (Chen, 2010; Panyushev, 2010; Blasiak et al., 2019)

For Ψ and $\gamma \in \mathbb{Z}^{\ell}$

$$H(\Psi;\gamma)(x) = \prod_{(i,j)\in \Delta^+_\ell\setminus \Psi} (1-R_{ij})h_\gamma(x) \; .$$

•
$$\Psi = \varnothing \Longrightarrow H(\varnothing; \gamma) = s_{\gamma}$$

13/25

A root ideal Ψ of type $A_{\ell-1}$ positive roots: given by Dyck path (lattice path above diagonal).

$$\begin{split} \Psi &= \text{Roots above Dyck path} \\ \Delta^+_\ell \backslash \Psi &= \text{Non-roots below} \end{split}$$

Catalan Function (Chen, 2010; Panyushev, 2010; Blasiak et al., 2019)

For Ψ and $\gamma \in \mathbb{Z}^\ell$

$$H(\Psi;\gamma)(x) = \prod_{(i,j)\in \Delta^+_\ell\setminus \Psi} (1-R_{ij})h_\gamma(x) \; .$$

•
$$\Psi = \varnothing \Longrightarrow H(\varnothing; \gamma) = s_{\gamma}$$

• $\Psi = \text{all roots} \Longrightarrow H(\Psi; \gamma) = h_{\gamma}$

Catalan functions

k-Schur root ideal for λ

$$\Psi = \Delta^{k}(\lambda) = \{(i,j) : j > k - \lambda_{i}\}$$

= root ideal with $k - \lambda_{i}$ non-roots in row i

Catalan functions

k-Schur root ideal for λ

$$\Psi = \Delta^{k}(\lambda) = \{(i,j) : j > k - \lambda_{i}\}$$

= root ideal with $k - \lambda_{i}$ non-roots in row i

$$\leftarrow$$
 row *i* has 4 – λ_i non-roots

Catalan functions

k-Schur root ideal for λ

$$\Psi = \Delta^{k}(\lambda) = \{(i,j) : j > k - \lambda_{i}\}$$

= root ideal with $k - \lambda_{i}$ non-roots in row i

$$\leftarrow$$
 row *i* has 4 – λ_i non-roots

k-Schur is a Catalan function (Blasiak et al., 2019).

For partition λ with $\lambda_1 \leq k$,

$$s_{\lambda}^{(k)} = H(\Delta^k(\lambda); \lambda).$$

George H. Seelinger (UVA)

Dual vertical Pieri rule: $s_{1^r}^{\perp} s_{\lambda}^{(k)} = \sum_{\mu} a_{\lambda\mu} s_{\mu}^{(k)}$ for $\langle s_{1^r}^{\perp} f, g \rangle = \langle f, s_{1^r} g \rangle$.

Dual vertical Pieri rule:
$$s_{1^r}^{\perp}s_{\lambda}^{(k)}=\sum_{\mu}a_{\lambda\mu}s_{\mu}^{(k)}$$
 for $\langle s_{1^r}^{\perp}f,g
angle=\langle f,s_{1^r}g
angle$.

Shift Invariance (Blasiak et al., 2019)

For partition λ of length ℓ with $\lambda_1 \leq k$,

$$s_{1^\ell}^\perp s_{\lambda+1^\ell}^{(k+1)} = s_\lambda^{(k)}$$
 .

Dual vertical Pieri rule:
$$s_{1^r}^{\perp}s_{\lambda}^{(k)}=\sum_{\mu}a_{\lambda\mu}s_{\mu}^{(k)}$$
 for $\langle s_{1^r}^{\perp}f,g
angle=\langle f,s_{1^r}g
angle$.

Shift Invariance (Blasiak et al., 2019)

For partition λ of length ℓ with $\lambda_1 \leq k$,

$$s_{1^\ell}^\perp s_{\lambda+1^\ell}^{(k+1)} = s_\lambda^{(k)}$$
 .

Proof: $k - \lambda_i = (k+1) - (\lambda_i + 1)$

Dual vertical Pieri rule:
$$s_{1^r}^\perp s_\lambda^{(k)} = \sum_\mu a_{\lambda\mu} s_\mu^{(k)}$$
 for $\langle s_{1^r}^\perp f,g
angle = \langle f,s_{1^r}g
angle$.

Shift Invariance (Blasiak et al., 2019)

For partition λ of length ℓ with $\lambda_1 \leq k$,

$$s_{1^\ell}^\perp s_{\lambda+1^\ell}^{(k+1)} = s_\lambda^{(k)}$$
 .

Proof: $k - \lambda_i = (k+1) - (\lambda_i + 1)$

Dual vertical Pieri rule:
$$s_{1^r}^\perp s_\lambda^{(k)} = \sum_\mu a_{\lambda\mu} s_\mu^{(k)}$$
 for $\langle s_{1^r}^\perp f,g
angle = \langle f,s_{1^r}g
angle$.

Shift Invariance (Blasiak et al., 2019)

For partition λ of length ℓ with $\lambda_1 \leq k$,

$$s_{1^\ell}^\perp s_{\lambda+1^\ell}^{(k+1)} = s_\lambda^{(k)}$$
 .

Proof: $k - \lambda_i = (k+1) - (\lambda_i + 1)$

$$s_{1^\ell}^\perp s_{\lambda+1^\ell}^{(k+1)} = \sum_\mu a_{\lambda+1^\ell,\mu} s_\mu^{(k+1)}$$

Dual vertical Pieri rule:
$$s_{1^r}^\perp s_\lambda^{(k)} = \sum_\mu a_{\lambda\mu} s_\mu^{(k)}$$
 for $\langle s_{1^r}^\perp f,g
angle = \langle f,s_{1^r}g
angle$.

Shift Invariance (Blasiak et al., 2019)

For partition λ of length ℓ with $\lambda_1 \leq k$,

$$s_{1^\ell}^\perp s_{\lambda+1^\ell}^{(k+1)} = s_\lambda^{(k)}$$
 .

Proof: $k - \lambda_i = (k+1) - (\lambda_i + 1)$

Branching is a special case of Pieri:

$$s_\lambda^{(k)}=s_{1^\ell}^\perp s_{\lambda+1^\ell}^{(k+1)}=\sum_\mu a_{\lambda+1^\ell,\mu}s_\mu^{(k+1)}$$

- Schubert calculus
- Catalan functions: a new approach to old problems
- K-theoretic Catalan functions

• Inhomogeneous basis: $g_{\lambda} = s_{\lambda} +$ lower degree terms.

- Inhomogeneous basis: $g_{\lambda} = s_{\lambda} +$ lower degree terms.
- Satisfies Pieri rule on "set-valued strips"

Dual Grothendieck polynomials

- Inhomogeneous basis: $g_{\lambda} = s_{\lambda} +$ lower degree terms.
- Satisfies Pieri rule on "set-valued strips"

Dual Grothendieck polynomials

- Inhomogeneous basis: $g_{\lambda} = s_{\lambda} +$ lower degree terms.
- Satisfies Pieri rule on "set-valued strips"

• $g_{\lambda} = \prod_{i < j} (1 - R_{ij}) k_{\lambda}$ for k_{λ} and inhomogeneous analogue of h_{λ} .

Dual Grothendieck polynomials

- Inhomogeneous basis: $g_{\lambda} = s_{\lambda} +$ lower degree terms.
- Satisfies Pieri rule on "set-valued strips"

- $g_{\lambda} = \prod_{i < j} (1 R_{ij}) k_{\lambda}$ for k_{λ} and inhomogeneous analogue of h_{λ} .
- Dual to Grothendieck polynomials G_λ: Schubert representatives for K*(Gr(m, n))

 \bullet Inhomogeneous basis: $g_{\lambda}^{(k)}=s_{\lambda}^{(k)}{+}{\rm lower}$ degree terms

- \bullet Inhomogeneous basis: $g_{\lambda}^{(k)}=s_{\lambda}^{(k)}{+}{\rm lower}$ degree terms
- Satisfies Pieri rule on "affine set-valued strips"

- Inhomogeneous basis: $g_{\lambda}^{(k)} = s_{\lambda}^{(k)} +$ lower degree terms
- Satisfies Pieri rule on "affine set-valued strips"

- Inhomogeneous basis: $g_{\lambda}^{(k)} = s_{\lambda}^{(k)} +$ lower degree terms
- Satisfies Pieri rule on "affine set-valued strips"

• Conjecture: $g_{\lambda}^{(k)}$ have positive branching into $g_{\mu}^{(k+1)}$ (Lam et al., 2010; Morse, 2011).

- Inhomogeneous basis: $g_{\lambda}^{(k)} = s_{\lambda}^{(k)} +$ lower degree terms
- Satisfies Pieri rule on "affine set-valued strips"

• Conjecture: $g_{\lambda}^{(k)}$ have positive branching into $g_{\mu}^{(k+1)}$ (Lam et al., 2010; Morse, 2011).

Problem

No direct formula for $g_{\lambda}^{(k)}$

Lowering Operators $L_j(f_{\lambda}) = f_{\lambda - \epsilon_i}$

Affine K-Theory Representatives with Raising Operators

K-theoretic Catalan function

Let $\Psi, \mathcal{L} \subseteq \Delta_{\ell}^+$ be order ideals of positive roots and $\gamma \in \mathbb{Z}^{\ell}$, then

$$\mathcal{K}(\Psi;\mathcal{L};\gamma) := \prod_{(i,j)\in\mathcal{L}} (1-L_j) \prod_{(i,j)\in\Delta^+_\ell ackslash \Psi} (1-R_{ij}) k_\gamma$$

Affine K-Theory Representatives with Raising Operators

K-theoretic Catalan function

Let $\Psi, \mathcal{L} \subseteq \Delta_{\ell}^+$ be order ideals of positive roots and $\gamma \in \mathbb{Z}^{\ell}$, then

$$\mathsf{K}(\Psi;\mathcal{L};\gamma) := \prod_{(i,j)\in\mathcal{L}} (1-L_j) \prod_{(i,j)\in\Delta_\ell^+\setminus\Psi} (1-R_{ij})k_\gamma$$

Example

non-roots of Ψ , roots of \mathcal{L}

(12)	(13)	(14)	(15)
	(23)	(24)	(25)
		(34)	(35)
			(45)

$$K(\Psi; \mathcal{L}; 54332)$$

 $= (1 - L_4)^2 (1 - L_5)^2 (1 - R_{12})(1 - R_{34})(1 - R_{45}) k_{54332}$

Affine K-Theory Representatives with Raising Operators

Answer (Blasiak-Morse-S., 2020)

Answer (Blasiak-Morse-S., 2020)

For *K*-homology of affine Grassmannian, $g_{\lambda}^{(k)} = K(\Delta^{k}(\lambda); \Delta^{k+1}(\lambda); \lambda)$ since this family satisfies the Pieri rule.

Answer (Blasiak-Morse-S., 2020)

For *K*-homology of affine Grassmannian, $g_{\lambda}^{(k)} = K(\Delta^{k}(\lambda); \Delta^{k+1}(\lambda); \lambda)$ since this family satisfies the Pieri rule.

Example

Branching Positivity

Theorem (Blasiak-Morse-S., 2020)

Theorem (Blasiak-Morse-S., 2020)

The
$$g_\lambda^{(k)}$$
 are "shift invariant", i.e. for $\ell=\ell(\lambda)$
 $G_{1^\ell}^\perp g_{\lambda+1^\ell}^{(k+1)}=g_\lambda^{(k)}$

...

Theorem (Blasiak-Morse-S., 2020)

The
$$g_{\lambda}^{(k)}$$
 are "shift invariant", i.e. for $\ell = \ell(\lambda)$

$${\mathcal G}_{1^\ell}^\perp {\mathcal g}_{\lambda+1^\ell}^{(k+1)} = {\mathcal g}_\lambda^{(k)}$$

Theorem (Blasiak-Morse-S., 2020)

The branching coefficients in

$$g_\lambda^{(k)} = \sum_\mu \mathsf{a}_{\lambda\mu} \mathsf{g}_\mu^{(k+1)}$$

satisfy $(-1)^{|\lambda|-|\mu|}a_{\lambda\mu}\in\mathbb{Z}_{\geq0}.$

For $G_{\lambda}^{(k)}$ an affine Grothendieck polynomial (dual to $g_{\lambda}^{(k)})$,

For $G_{\lambda}^{(k)}$ an affine Grothendieck polynomial (dual to $g_{\lambda}^{(k)}$), Combinatorially describe dual Pieri rule: $G_{1^{r}}^{\perp}g_{\lambda}^{(k)} = \sum_{\mu}??g_{\mu}^{(k)} \iff G_{1^{r}}G_{\mu}^{(k)} = \sum_{\lambda}??G_{\lambda}^{(k)}, 1 \le r \le k.$
For $G_{\lambda}^{(k)}$ an affine Grothendieck polynomial (dual to $g_{\lambda}^{(k)}$),

• Combinatorially describe dual Pieri rule: $G_{1^r}^{\perp}g_{\lambda}^{(k)} = \sum_{\mu}??g_{\mu}^{(k)} \iff G_{1^r}G_{\mu}^{(k)} = \sum_{\lambda}??G_{\lambda}^{(k)}, \ 1 \le r \le k.$

② Combinatorially describe branching coefficients: $g_{\lambda}^{(k)} = \sum_{\mu} ?? g_{\mu}^{(k+1)}$.

For $G_{\lambda}^{(k)}$ an affine Grothendieck polynomial (dual to $g_{\lambda}^{(k)}$),

• Combinatorially describe dual Pieri rule: $G_{1^r}^{\perp}g_{\lambda}^{(k)} = \sum_{\mu}??g_{\mu}^{(k)} \iff G_{1^r}G_{\mu}^{(k)} = \sum_{\lambda}??G_{\lambda}^{(k)}, \ 1 \le r \le k.$

② Combinatorially describe branching coefficients: $g_{\lambda}^{(k)} = \sum_{\mu} ?? g_{\mu}^{(k+1)}$.

• Combinatorially describe $g_{\lambda}^{(k)} = \sum_{\mu} ?? s_{\mu}^{(k)}$.

References

Thank you!

Anderson, David, Linda Chen, and Hsian-Hua Tseng. 2017. On the quantum K-ring of the flag manifold, preprint. arXiv: 1711.08414.

Blasiak, Jonah, Jennifer Morse, Anna Pun, and Daniel Summers. 2019. *Catalan Functions and k-Schur Positivity*, J. Amer. Math. Soc. **32**, no. 4, 921–963.

Chen, Li-Chung. 2010. Skew-linked partitions and a representation theoretic model for k-Schur functions, Ph.D. thesis.

Ikeda, Takeshi, Shinsuke Iwao, and Toshiaki Maeno. 2018. Peterson Isomorphism in K-theory and Relativistic Toda Lattice, preprint. arXiv: 1703.08664.

Lam, Thomas. 2008. *Schubert polynomials for the affine Grassmannian*, J. Amer. Math. Soc. **21**, no. 1, 259–281.

Lam, Thomas, Luc Lapointe, Jennifer Morse, and Mark Shimozono. 2010. Affine insertion and Pieri rules for the affine Grassmannian, Mem. Amer. Math. Soc. **208**, no. 977.

Lam, Thomas, Anne Schilling, and Mark Shimozono. 2010. *K-theory Schubert calculus of the affine Grassmannian*, Compositio Math. **146**, 811–852.

Lapointe, Luc, Alain Lascoux, and Jennifer Morse. 2003. *Tableau atoms and a new Macdonald positivity conjecture*, Duke Mathematical Journal **116**, no. 1, 103–146.

Morse, Jennifer. 2011. *Combinatorics of the K-theory of affine Grassmannians*, Advances in Mathematics.

Panyushev, Dmitri I. 2010. Generalised Kostka-Foulkes polynomials and cohomology of line bundles on homogeneous vector bundles, Selecta Math. (N.S.) **16**, no. 2, 315–342.