K-theoretic Catalan functions

George H. Seelinger (joint with J. Blasiak and J. Morse)

CAGE
ghs9ae@virginia.edu
6 February 2020

Overview

- Schubert calculus
- Catalan functions: a new approach to old problems
- K-theoretic Catalan functions

Overview of Schubert Calculus Combinatorics

Geometric problem

Find $c_{\lambda \mu}^{\nu}=\#$ of points in intersection of subvarieties in a variety X.

Overview of Schubert Calculus Combinatorics

Geometric problem

Find $c_{\lambda \mu}^{\nu}=\#$ of points in intersection of subvarieties in a variety X.

Cohomology

Schubert basis $\left\{\sigma_{\lambda}\right\}$ for $H^{*}(X)$ with property $\sigma_{\lambda} \cup \sigma_{\mu}=\sum_{\nu} c_{\lambda \mu}^{\nu} \sigma_{\nu}$

Overview of Schubert Calculus Combinatorics

Geometric problem

Find $c_{\lambda \mu}^{\nu}=\#$ of points in intersection of subvarieties in a variety X.

Cohomology

Schubert basis $\left\{\sigma_{\lambda}\right\}$ for $H^{*}(X)$ with property $\sigma_{\lambda} \cup \sigma_{\mu}=\sum_{\nu} c_{\lambda \mu}^{\nu} \sigma_{\nu}$

Representatives

Special basis of polynomials $\left\{f_{\lambda}\right\}$ such that $f_{\lambda} \cdot f_{\mu}=\sum_{\nu} c_{\lambda \mu}^{\nu} f_{\nu}$

Overview of Schubert Calculus Combinatorics (cont.)

Combinatorial study of $\left\{f_{\lambda}\right\}$ enlightens the geometry (and cohomology).

Goal

Identify $\left\{f_{\lambda}\right\}$ in explicit (simple) terms amenable to calculation and proofs.

Classical Schubert Calculus

Geometric problem

Find $c_{\lambda \mu}^{\nu}=\#$ of points in intersection of Schubert varieties $\left\{X_{\lambda}\right\}_{\lambda \subseteq\left(n^{m}\right)}$ in variety $X=\operatorname{Gr}(m, n)$.

Classical Schubert Calculus

Geometric problem

Find $c_{\lambda \mu}^{\nu}=\#$ of points in intersection of Schubert varieties $\left\{X_{\lambda}\right\}_{\lambda \subseteq\left(n^{m}\right)}$ in variety $X=\operatorname{Gr}(m, n)$.

Cohomology

Schubert basis $\left\{\sigma_{\lambda}\right\}_{\lambda \subseteq\left(n^{m}\right)}$ for $\boldsymbol{H}^{*}(X)$ with property $\sigma_{\lambda} \cup \sigma_{\mu}=\sum_{\nu} c_{\lambda_{\mu}}^{\nu} \sigma_{\nu}$

Classical Schubert Calculus

Geometric problem

Find $c_{\lambda \mu}^{\nu}=\#$ of points in intersection of Schubert varieties $\left\{X_{\lambda}\right\}_{\lambda \subseteq\left(n^{m}\right)}$ in variety $X=\operatorname{Gr}(m, n)$.

$$
\downarrow
$$

Cohomology

Schubert basis $\left\{\sigma_{\lambda}\right\}_{\lambda \subseteq\left(n^{m}\right)}$ for $H^{*}(X)$ with property $\sigma_{\lambda} \cup \sigma_{\mu}=\sum_{\nu} c_{\lambda \mu}^{\nu} \sigma_{\nu}$

Representatives

Special basis of Schur polynomials $\left\{s_{\lambda}\right\}$ such that $s_{\lambda} \cdot s_{\mu}=\sum_{\nu} c_{\lambda \mu}^{\nu} s_{\nu}$ for Littlewood-Richardson coefficients $c_{\lambda \mu}^{\nu}$.

Next Step: Flag Variety

- $X=F I_{n}(\mathbb{C})=\left\{V_{0} \subseteq V_{1} \subseteq \cdots \subseteq V_{n} \mid \operatorname{dim} V_{i}=i\right\}$

Next Step: Flag Variety

- $X=F I_{n}(\mathbb{C})=\left\{V_{0} \subseteq V_{1} \subseteq \cdots \subseteq V_{n} \mid \operatorname{dim} V_{i}=i\right\}$
- Decomposes into Schubert varieties indexed by $w \in S_{n}$.

Next Step: Flag Variety

- $X=F I_{n}(\mathbb{C})=\left\{V_{0} \subseteq V_{1} \subseteq \cdots \subseteq V_{n} \mid \operatorname{dim} V_{i}=i\right\}$
- Decomposes into Schubert varieties indexed by $w \in S_{n}$.
- $H^{*}\left(F I_{n}(\mathbb{C})\right)$ supported by Schubert polynomials $\mathfrak{S}_{w} \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ (Not necessarily symmetric!)

Next Step: Flag Variety

- $X=F I_{n}(\mathbb{C})=\left\{V_{0} \subseteq V_{1} \subseteq \cdots \subseteq V_{n} \mid \operatorname{dim} V_{i}=i\right\}$
- Decomposes into Schubert varieties indexed by $w \in S_{n}$.
- $H^{*}\left(F I_{n}(\mathbb{C})\right)$ supported by Schubert polynomials $\mathfrak{S}_{w} \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ (Not necessarily symmetric!)

Open Problem

Structure constants $\mathfrak{S}_{w} \mathfrak{S}_{u}=c_{w u}^{v} \mathfrak{S}_{v}$ are combinatorially unknown.

Schubert Calculus Variations

There are many variations on classical Schubert calculus of the Grassmannian (Type A).

Schubert Calculus Variations

There are many variations on classical Schubert calculus of the Grassmannian (Type A).

Theory	f_{λ}
(Co)homology of Grassmannian	Schur functions
(Co)homology of flag variety	Schubert polynomimals
Quantum cohomology of flag variety	Quantum Schuberts
(Co)homology of Types BCD Grassmannian	Schur- P and Q functions
(Co)homology of affine Grassmannian	(dual) k-Schur functions
K-theory of Grassmannian	Grothendieck polynomials
K-homology of affine Grassmannian	K - k-Schur functions

Schubert Calculus Variations

There are many variations on classical Schubert calculus of the Grassmannian (Type A).

Theory	f_{λ}
(Co)homology of Grassmannian	Schur functions
(Co)homology of flag variety	Schubert polynomimals
Quantum cohomology of flag variety	Quantum Schuberts
(Co)homology of Types BCD Grassmannian	Schur- P and Q functions
(Co)homology of affine Grassmannian	(dual) k-Schur functions
K-theory of Grassmannian	Grothendieck polynomials
K-homology of affine Grassmannian	K- -Schur functions

And many more!

Peterson Isomorphism

- $Q H^{*}\left(F I_{k+1}\right)$ quantum deformation of $H^{*}\left(F I_{k+1}\right)$.

Peterson Isomorphism

- $Q H^{*}\left(F I_{k+1}\right)$ quantum deformation of $H^{*}\left(F I_{k+1}\right)$.
- Supported by quantum Schubert polynomials \mathfrak{S}_{w}^{Q}.

Peterson Isomorphism

- $Q H^{*}\left(F I_{k+1}\right)$ quantum deformation of $H^{*}\left(F I_{k+1}\right)$.
- Supported by quantum Schubert polynomials \mathfrak{S}_{w}^{Q}.
- Peterson isomorphism

$$
\begin{aligned}
\Phi: Q H^{*}\left(F I_{k+1}\right) & \rightarrow H_{*}\left(\operatorname{Gr}_{S L_{k+1}}\right)_{l o c} \\
\mathfrak{S}_{w}^{Q} & \mapsto \frac{s_{\lambda}^{(k)}}{\prod_{i \in \operatorname{Des}(w)} \tau_{i}}
\end{aligned}
$$

where $s_{\lambda}^{(k)}$ is a k-Schur function.

Peterson Isomorphism

- $Q H^{*}\left(F I_{k+1}\right)$ quantum deformation of $H^{*}\left(F I_{k+1}\right)$.
- Supported by quantum Schubert polynomials \mathfrak{S}_{w}^{Q}.
- Peterson isomorphism

$$
\begin{aligned}
\Phi: Q H^{*}\left(F I_{k+1}\right) & \rightarrow H_{*}\left(G r_{S L_{k+1}}\right)_{l o c} \\
\mathfrak{S}_{w}^{Q} & \mapsto \frac{s_{\lambda}^{(k)}}{\prod_{i \in \operatorname{Des}(w)} \tau_{i}}
\end{aligned}
$$

where $s_{\lambda}^{(k)}$ is a k-Schur function.

Upshot

Computations for (quantum) Schubert polynomials can be moved into symmetric functions.

k-Schur functions

- $s_{\lambda}^{(k)}$ for $\lambda_{1} \leq k$ a basis for $\mathbb{Z}\left[s_{1}, s_{2}, \ldots, s_{k}\right]$ (Lapointe et al., 2003).

k-Schur functions

- $s_{\lambda}^{(k)}$ for $\lambda_{1} \leq k$ a basis for $\mathbb{Z}\left[s_{1}, s_{2}, \ldots, s_{k}\right]$ (Lapointe et al., 2003).
- Schubert representatives for $H_{*}\left(G r_{S L_{k+1}}\right)$ (Lam, 2008).

k-Schur functions

- $s_{\lambda}^{(k)}$ for $\lambda_{1} \leq k$ a basis for $\mathbb{Z}\left[s_{1}, s_{2}, \ldots, s_{k}\right]$ (Lapointe et al., 2003).
- Schubert representatives for $H_{*}\left(G r_{S L_{k+1}}\right)$ (Lam, 2008).
- Has a tableaux formulation and Pieri rule: $s_{1 r} s_{\lambda}^{(k)}=\sum_{\mu} a_{\lambda \mu} s_{\mu}^{(k)}$

k-Schur functions

- $s_{\lambda}^{(k)}$ for $\lambda_{1} \leq k$ a basis for $\mathbb{Z}\left[s_{1}, s_{2}, \ldots, s_{k}\right]$ (Lapointe et al., 2003).
- Schubert representatives for $H_{*}\left(G r_{S L_{k+1}}\right)$ (Lam, 2008).
- Has a tableaux formulation and Pieri rule: $s_{1} r s_{\lambda}^{(k)}=\sum_{\mu} a_{\lambda \mu} s_{\mu}^{(k)}$
- $s_{\lambda}^{(k)}=s_{\lambda}$ as $k \rightarrow \infty$.

k-Schur functions

- $s_{\lambda}^{(k)}$ for $\lambda_{1} \leq k$ a basis for $\mathbb{Z}\left[s_{1}, s_{2}, \ldots, s_{k}\right]$ (Lapointe et al., 2003).
- Schubert representatives for $H_{*}\left(G r_{S L_{k+1}}\right)$ (Lam, 2008).
- Has a tableaux formulation and Pieri rule: $s_{1 r} s_{\lambda}^{(k)}=\sum_{\mu} a_{\lambda \mu} s_{\mu}^{(k)}$
- $s_{\lambda}^{(k)}=s_{\lambda}$ as $k \rightarrow \infty$.
- Branching with positive coefficients (Lam et al., 2010):

k-Schur functions

- $s_{\lambda}^{(k)}$ for $\lambda_{1} \leq k$ a basis for $\mathbb{Z}\left[s_{1}, s_{2}, \ldots, s_{k}\right]$ (Lapointe et al., 2003).
- Schubert representatives for $H_{*}\left(G r_{S L_{k+1}}\right)(L a m, 2008)$.
- Has a tableaux formulation and Pieri rule: $s_{1} r s_{\lambda}^{(k)}=\sum_{\mu} a_{\lambda \mu} s_{\mu}^{(k)}$
- $s_{\lambda}^{(k)}=s_{\lambda}$ as $k \rightarrow \infty$.
- Branching with positive coefficients (Lam et al., 2010):

- Has geometric interpretation.

k-Schur functions

- $s_{\lambda}^{(k)}$ for $\lambda_{1} \leq k$ a basis for $\mathbb{Z}\left[s_{1}, s_{2}, \ldots, s_{k}\right]$ (Lapointe et al., 2003).
- Schubert representatives for $H_{*}\left(G r_{S L_{k+1}}\right)$ (Lam, 2008).
- Has a tableaux formulation and Pieri rule: $s_{1 r} s_{\lambda}^{(k)}=\sum_{\mu} a_{\lambda \mu} s_{\mu}^{(k)}$
- $s_{\lambda}^{(k)}=s_{\lambda}$ as $k \rightarrow \infty$.
- Branching with positive coefficients (Lam et al., 2010):

- Has geometric interpretation.
- No combinatorial interpretation of branching coefficients.

k-Schur functions

- $s_{\lambda}^{(k)}$ for $\lambda_{1} \leq k$ a basis for $\mathbb{Z}\left[s_{1}, s_{2}, \ldots, s_{k}\right]$ (Lapointe et al., 2003).
- Schubert representatives for $H_{*}\left(G r_{S L_{k+1}}\right)$ (Lam, 2008).
- Has a tableaux formulation and Pieri rule: $s_{1} r s_{\lambda}^{(k)}=\sum_{\mu} a_{\lambda \mu} s_{\mu}^{(k)}$
- $s_{\lambda}^{(k)}=s_{\lambda}$ as $k \rightarrow \infty$.
- Branching with positive coefficients (Lam et al., 2010):

- Has geometric interpretation.
- No combinatorial interpretation of branching coefficients.
- Definition with t important for Macdonald polynomials.

k-Schur functions

- $s_{\lambda}^{(k)}$ for $\lambda_{1} \leq k$ a basis for $\mathbb{Z}\left[s_{1}, s_{2}, \ldots, s_{k}\right]$ (Lapointe et al., 2003).
- Schubert representatives for $H_{*}\left(G r_{S L_{k+1}}\right)$ (Lam, 2008).
- Has a tableaux formulation and Pieri rule: $s_{1} r s_{\lambda}^{(k)}=\sum_{\mu} a_{\lambda \mu} s_{\mu}^{(k)}$
- $s_{\lambda}^{(k)}=s_{\lambda}$ as $k \rightarrow \infty$.
- Branching with positive coefficients (Lam et al., 2010):

- Has geometric interpretation.
- No combinatorial interpretation of branching coefficients.
- Definition with t important for Macdonald polynomials.
- Many definitions. A new one makes proofs easier!

Overview

- Schubert calculus
- Catalan functions: a new approach to old problems
- K-theoretic Catalan functions

Raising Operators on Symmetric Functions

- Raising operators $R_{i, j}$ act on diagrams

Raising Operators on Symmetric Functions

- Raising operators $R_{i, j}$ act on diagrams

- Extend action to a symmetric function f_{λ} by $R_{i, j}\left(f_{\lambda}\right)=f_{\lambda+\epsilon_{i}-\epsilon_{j}}$.

Raising Operators on Symmetric Functions

- Raising operators $R_{i, j}$ act on diagrams

- Extend action to a symmetric function f_{λ} by $R_{i, j}\left(f_{\lambda}\right)=f_{\lambda+\epsilon_{i}-\epsilon_{j}}$.
- For $h_{\lambda}=s_{\lambda_{1}} \cdots s_{\lambda_{r}}$, we have the Jacobi-Trudi identity

$$
s_{\lambda}=\prod_{i<j}\left(1-R_{i j}\right) h_{\lambda}
$$

Raising Operators on Symmetric Functions

- Raising operators $R_{i, j}$ act on diagrams

- Extend action to a symmetric function f_{λ} by $R_{i, j}\left(f_{\lambda}\right)=f_{\lambda+\epsilon_{i}-\epsilon_{j}}$.
- For $h_{\lambda}=s_{\lambda_{1}} \cdots s_{\lambda_{r}}$, we have the Jacobi-Trudi identity

$$
s_{\lambda}=\prod_{i<j}\left(1-R_{i j}\right) h_{\lambda}
$$

$$
\begin{aligned}
s_{22} & =\left(1-R_{12}\right) h_{22}=h_{22}-h_{31} \\
s_{211} & =\left(1-R_{12}\right)\left(1-R_{23}\right)\left(1-R_{13}\right) h_{211} \\
& =h_{211}-h_{301}-h_{220}-h_{310}+h_{310}+\underbrace{h_{32-1}}_{=0}+h_{400}-\underbrace{h_{41-1}}_{=0}
\end{aligned}
$$

Raising Operators on Symmetric Functions

Gives definition for Schur function indexed by any integer vector $\alpha \in \mathbb{Z}^{\ell}$.

Raising Operators on Symmetric Functions

Gives definition for Schur function indexed by any integer vector $\alpha \in \mathbb{Z}^{\ell}$. Straightening:

$$
s_{\alpha}=\prod_{i<j}\left(1-R_{i j}\right) h_{\alpha}=\left\{\begin{array}{l}
\pm s_{\lambda} \quad \text { for a partition } \lambda \\
0
\end{array}\right.
$$

Raising Operators on Symmetric Functions

Gives definition for Schur function indexed by any integer vector $\alpha \in \mathbb{Z}^{\ell}$. Straightening:

$$
s_{\alpha}=\prod_{i<j}\left(1-R_{i j}\right) h_{\alpha}=\left\{\begin{array}{l}
\pm s_{\lambda} \quad \text { for a partition } \lambda \\
0
\end{array}\right.
$$

For $\left\langle s_{1^{r}}^{\perp} s_{\lambda}, s_{\mu}\right\rangle=\left\langle s_{\lambda}, s_{1 r} s_{\mu}\right\rangle$,

$$
\begin{aligned}
s_{1^{r}}^{\perp} s_{\lambda} & =\sum_{S \subseteq[1, \ell],|S|=r} s_{\lambda-\epsilon_{S}} \\
s_{1^{2}}^{\perp} s_{333} & =s_{322}+s_{232}+s_{223}
\end{aligned}
$$

Root Ideals

A root ideal Ψ of type $A_{\ell-1}$ positive roots: given by Dyck path (lattice path above diagonal).

$\Psi=$ Roots above Dyck path
$\Delta_{\ell}^{+} \backslash \Psi=$ Non-roots below

Root Ideals

A root ideal Ψ of type $A_{\ell-1}$ positive roots: given by Dyck path (lattice path above diagonal).

(12)	(13) (14)	(15)
	(23) (24)	(25)
	(34)	(35)
		(45)

$$
\begin{gathered}
\Psi=\text { Roots above Dyck path } \\
\Delta_{\ell}^{+} \backslash \Psi=\text { Non-roots below }
\end{gathered}
$$

Catalan Function (Chen, 2010; Panyushev, 2010; Blasiak et al., 2019)
For ψ and $\gamma \in \mathbb{Z}^{\ell}$

$$
H(\Psi ; \gamma)(x)=\prod_{(i, j) \in \Delta_{\ell}^{+} \backslash \Psi}\left(1-R_{i j}\right) h_{\gamma}(x)
$$

Root Ideals

A root ideal Ψ of type $A_{\ell-1}$ positive roots: given by Dyck path (lattice path above diagonal).

(12)	(13)	(14)	(15)
-	(23)	(24)	(25)
	,	(34)	(35)
			(45)
			-

$$
\begin{gathered}
\Psi=\text { Roots above Dyck path } \\
\Delta_{\ell}^{+} \backslash \Psi=\text { Non-roots below }
\end{gathered}
$$

Catalan Function (Chen, 2010; Panyushev, 2010; Blasiak et al., 2019)
For ψ and $\gamma \in \mathbb{Z}^{\ell}$

$$
H(\Psi ; \gamma)(x)=\prod_{(i, j) \in \Delta_{\ell}^{+} \backslash \Psi}\left(1-R_{i j}\right) h_{\gamma}(x)
$$

- $\Psi=\varnothing \Longrightarrow H(\varnothing ; \gamma)=s_{\gamma}$

Root Ideals

A root ideal Ψ of type $A_{\ell-1}$ positive roots: given by Dyck path (lattice path above diagonal).

$(12)(13)(14)(15)$			
		$(23)(24)(25)$	
		$(34)(35)$	
			(45)

$$
\begin{gathered}
\Psi=\text { Roots above Dyck path } \\
\Delta_{\ell}^{+} \backslash \Psi=\text { Non-roots below }
\end{gathered}
$$

Catalan Function (Chen, 2010; Panyushev, 2010; Blasiak et al., 2019)
For ψ and $\gamma \in \mathbb{Z}^{\ell}$

$$
H(\Psi ; \gamma)(x)=\prod_{(i, j) \in \Delta_{\ell}^{+} \backslash \Psi}\left(1-R_{i j}\right) h_{\gamma}(x)
$$

- $\Psi=\varnothing \Longrightarrow H(\varnothing ; \gamma)=s_{\gamma}$
- $\Psi=$ all roots $\Longrightarrow H(\Psi ; \gamma)=h_{\gamma}$

Catalan functions

k-Schur root ideal for λ

$$
\begin{aligned}
\Psi=\Delta^{k}(\lambda) & =\left\{(i, j): j>k-\lambda_{i}\right\} \\
& =\text { root ideal with } k-\lambda_{i} \text { non-roots in row } i
\end{aligned}
$$

Catalan functions

k-Schur root ideal for λ

$$
\Psi=\Delta^{k}(\lambda)=\left\{(i, j): j>k-\lambda_{i}\right\}
$$

$$
=\text { root ideal with } k-\lambda_{i} \text { non-roots in row } i
$$

\leftarrow row i has $4-\lambda_{i}$ non-roots

Catalan functions

k-Schur root ideal for λ

$$
\Psi=\Delta^{k}(\lambda)=\left\{(i, j): j>k-\lambda_{i}\right\}
$$

$$
=\text { root ideal with } k-\lambda_{i} \text { non-roots in row } i
$$

k-Schur is a Catalan function (Blasiak et al., 2019).

For partition λ with $\lambda_{1} \leq k$,

$$
s_{\lambda}^{(k)}=H\left(\Delta^{k}(\lambda) ; \lambda\right)
$$

$$
\begin{aligned}
& \leftarrow \text { row } i \text { has } 4-\lambda_{i} \text { non-roots }
\end{aligned}
$$

Key ingredient of branching proof

Dual vertical Pieri rule: $s_{1^{r}} s_{\lambda}^{(k)}=\sum_{\mu} a_{\lambda \mu} s_{\mu}^{(k)}$ for $\left\langle s_{1^{r}}^{\frac{1}{r}} f, g\right\rangle=\left\langle f, s_{1} r g\right\rangle$.

Key ingredient of branching proof

Dual vertical Pieri rule: $s_{1}^{\frac{1}{r}} s_{\lambda}^{(k)}=\sum_{\mu} a_{\lambda \mu} s_{\mu}^{(k)}$ for $\left\langle s_{1^{r}}^{\frac{1}{r}} f, g\right\rangle=\left\langle f, s_{1} g\right\rangle$.
Shift Invariance (Blasiak et al., 2019)
For partition λ of length ℓ with $\lambda_{1} \leq k$,

$$
s_{1^{s}}^{\perp}{ }_{\lambda+1^{\ell}}^{(k+1)}=s_{\lambda}^{(k)}
$$

Key ingredient of branching proof

Dual vertical Pieri rule: $s_{1}^{\frac{1}{r}} s_{\lambda}^{(k)}=\sum_{\mu} a_{\lambda \mu} s_{\mu}^{(k)}$ for $\left\langle s_{1^{r}}^{\frac{1}{r}} f, g\right\rangle=\left\langle f, s_{1} g\right\rangle$.
Shift Invariance (Blasiak et al., 2019)
For partition λ of length ℓ with $\lambda_{1} \leq k$,

$$
s_{1^{\ell}}^{\perp} s_{\lambda+1^{\ell}}^{(k+1)}=s_{\lambda}^{(k)}
$$

Proof: $k-\lambda_{i}=(k+1)-\left(\lambda_{i}+1\right)$

Key ingredient of branching proof

Dual vertical Pieri rule: $s_{1}^{\frac{1}{r}} s_{\lambda}^{(k)}=\sum_{\mu} a_{\lambda \mu} s_{\mu}^{(k)}$ for $\left\langle s_{1^{r}}^{\frac{1}{r}} f, g\right\rangle=\left\langle f, s_{1} g\right\rangle$.
Shift Invariance (Blasiak et al., 2019)
For partition λ of length ℓ with $\lambda_{1} \leq k$,

$$
s_{1^{s}}^{\perp}{ }_{\lambda+1^{\ell}}^{(k+1)}=s_{\lambda}^{(k)}
$$

Proof: $k-\lambda_{i}=(k+1)-\left(\lambda_{i}+1\right)$

$$
\Delta^{4}(3,3,2,2,1,1)=\begin{array}{|l}
\ddot{y}_{3^{3}} 2_{2} \\
\hline
\end{array} 1_{1}{ }_{1}
$$

$$
\Delta^{5}(4,4,3,3,2,2)={\stackrel{4}{4} 4^{4} 3^{3}}_{\underbrace{3} 2_{2}}
$$

Key ingredient of branching proof

Dual vertical Pieri rule: $s_{1^{r}} s_{\lambda}^{(k)}=\sum_{\mu} a_{\lambda \mu} s_{\mu}^{(k)}$ for $\left\langle s_{1^{r}}^{\frac{1}{r}} f, g\right\rangle=\left\langle f, s_{1} r g\right\rangle$.

Shift Invariance (Blasiak et al., 2019)

For partition λ of length ℓ with $\lambda_{1} \leq k$,

$$
s_{1^{\ell}}^{\perp} s_{\lambda+1^{\ell}}^{(k+1)}=s_{\lambda}^{(k)}
$$

Proof: $k-\lambda_{i}=(k+1)-\left(\lambda_{i}+1\right)$

Pieri:

$$
s_{1^{\ell}}^{\perp} s_{\lambda+1^{\ell}}^{(k+1)}=\sum_{\mu} a_{\lambda+1^{\ell}, \mu} s_{\mu}^{(k+1)}
$$

Key ingredient of branching proof

Dual vertical Pieri rule: $s_{1^{r}} s_{\lambda}^{(k)}=\sum_{\mu} a_{\lambda \mu} s_{\mu}^{(k)}$ for $\left\langle s_{1^{r}}^{\frac{1}{r}} f, g\right\rangle=\left\langle f, s_{1} r g\right\rangle$.
Shift Invariance (Blasiak et al., 2019)
For partition λ of length ℓ with $\lambda_{1} \leq k$,

$$
s_{1^{\ell}}^{\perp} s_{\lambda+1^{\ell}}^{(k+1)}=s_{\lambda}^{(k)}
$$

Proof: $k-\lambda_{i}=(k+1)-\left(\lambda_{i}+1\right)$

Branching is a special case of Pieri:

$$
s_{\lambda}^{(k)}=s_{1^{\ell}}^{\perp} s_{\lambda+1^{\ell}}^{(k+1)}=\sum_{\mu} a_{\lambda+1^{\ell}, \mu} s_{\mu}^{(k+1)}
$$

Overview

- Schubert calculus
- Catalan functions: a new approach to old problems
- K-theoretic Catalan functions

Dual Grothendieck polynomials

- Inhomogeneous basis: $g_{\lambda}=s_{\lambda}+$ lower degree terms.

Dual Grothendieck polynomials

- Inhomogeneous basis: $g_{\lambda}=s_{\lambda}+$ lower degree terms.
- Satisfies Pieri rule on "set-valued strips"

Dual Grothendieck polynomials

- Inhomogeneous basis: $g_{\lambda}=s_{\lambda}+$ lower degree terms.
- Satisfies Pieri rule on "set-valued strips"

$$
\begin{aligned}
& g_{1^{2}} g_{3,2}=g_{43}+g_{421}+g_{331}-g_{42}-g_{33}-2 g_{321}+g_{31} \\
& \text { H H H H H H BH H }
\end{aligned}
$$

Dual Grothendieck polynomials

- Inhomogeneous basis: $g_{\lambda}=s_{\lambda}+$ lower degree terms.
- Satisfies Pieri rule on "set-valued strips"

$$
\begin{array}{rl}
g_{1^{2}} g_{3,2}= & g_{43}+g_{421}+g_{331}-g_{42}-g_{33}-2 g_{321}+g_{31} \\
& H \square \square \square \square \\
H & H
\end{array}
$$

- $g_{\lambda}=\prod_{i<j}\left(1-R_{i j}\right) k_{\lambda}$ for k_{λ} and inhomogeneous analogue of h_{λ}.

Dual Grothendieck polynomials

- Inhomogeneous basis: $g_{\lambda}=s_{\lambda}+$ lower degree terms.
- Satisfies Pieri rule on "set-valued strips"

$$
\begin{array}{rl}
g_{1^{2}} g_{3,2}= & g_{43}+g_{421}+g_{331}-g_{42}-g_{33}-2 g_{321}+g_{31} \\
& H \square \square \square \square \square \\
H & H
\end{array}
$$

- $g_{\lambda}=\prod_{i<j}\left(1-R_{i j}\right) k_{\lambda}$ for k_{λ} and inhomogeneous analogue of h_{λ}.
- Dual to Grothendieck polynomials G_{λ} : Schubert representatives for $K^{*}(\operatorname{Gr}(m, n))$

K-k-Schur functions

- Inhomogeneous basis: $g_{\lambda}^{(k)}=s_{\lambda}^{(k)}+$ lower degree terms

K-k-Schur functions

- Inhomogeneous basis: $g_{\lambda}^{(k)}=s_{\lambda}^{(k)}+$ lower degree terms
- Satisfies Pieri rule on "affine set-valued strips"

K-k-Schur functions

- Inhomogeneous basis: $g_{\lambda}^{(k)}=s_{\lambda}^{(k)}$ +lower degree terms
- Satisfies Pieri rule on "affine set-valued strips"

K-k-Schur functions

- Inhomogeneous basis: $g_{\lambda}^{(k)}=s_{\lambda}^{(k)}+$ lower degree terms
- Satisfies Pieri rule on "affine set-valued strips"

$$
g_{1} g_{211}^{(2)}=g_{2111}^{(2)}-2 g_{211}^{(2)} \quad \text { 2-bounded partitions } \leftrightarrow 3 \text {-cores }
$$

- Conjecture: $g_{\lambda}^{(k)}$ have positive branching into $g_{\mu}^{(k+1)}$ (Lam et al., 2010; Morse, 2011).

K-k-Schur functions

- Inhomogeneous basis: $g_{\lambda}^{(k)}=s_{\lambda}^{(k)}+$ lower degree terms
- Satisfies Pieri rule on "affine set-valued strips"

$$
g_{1} g_{211}^{(2)}=g_{2111}^{(2)}-2 g_{211}^{(2)} \quad \text { 2-bounded partitions } \leftrightarrow 3 \text {-cores }
$$

- Conjecture: $g_{\lambda}^{(k)}$ have positive branching into $g_{\mu}^{(k+1)}$ (Lam et al., 2010; Morse, 2011).

Problem

No direct formula for $g_{\lambda}^{(k)}$

An Extra Ingredient: Lowering Operators

Lowering Operators $L_{j}\left(f_{\lambda}\right)=f_{\lambda-\epsilon_{j}}$

Affine K-Theory Representatives with Raising Operators

K-theoretic Catalan function

Let $\Psi, \mathcal{L} \subseteq \Delta_{\ell}^{+}$be order ideals of positive roots and $\gamma \in \mathbb{Z}^{\ell}$, then

$$
K(\Psi ; \mathcal{L} ; \gamma):=\prod_{(i, j) \in \mathcal{L}}\left(1-L_{j}\right) \prod_{(i, j) \in \Delta_{\ell}^{+} \backslash \Psi}\left(1-R_{i j}\right) k_{\gamma}
$$

Affine K-Theory Representatives with Raising Operators

K-theoretic Catalan function

Let $\Psi, \mathcal{L} \subseteq \Delta_{\ell}^{+}$be order ideals of positive roots and $\gamma \in \mathbb{Z}^{\ell}$, then

$$
K(\Psi ; \mathcal{L} ; \gamma):=\prod_{(i, j) \in \mathcal{L}}\left(1-L_{j}\right) \prod_{(i, j) \in \Delta_{\ell}^{+} \backslash \Psi}\left(1-R_{i j}\right) k_{\gamma}
$$

Example

non-roots of ψ, roots of \mathcal{L}

	$(12)(13)(14)(15)$
	$(23)(24)(25)$
	$(34)(35)$

$$
\begin{aligned}
& K(\Psi ; \mathcal{L} ; 54332) \\
& =\left(1-L_{4}\right)^{2}\left(1-L_{5}\right)^{2}\left(1-R_{12}\right)\left(1-R_{34}\right)\left(1-R_{45}\right) k_{54332}
\end{aligned}
$$

Affine K-Theory Representatives with Raising Operators

Answer (Blasiak-Morse-S., 2020)

Affine K-Theory Representatives with Raising Operators

Answer (Blasiak-Morse-S., 2020)

For K-homology of affine Grassmannian, $g_{\lambda}^{(k)}=K\left(\Delta^{k}(\lambda) ; \Delta^{k+1}(\lambda) ; \lambda\right)$ since this family satisfies the Pieri rule.

Affine K-Theory Representatives with Raising Operators

Answer (Blasiak-Morse-S., 2020)

For K-homology of affine Grassmannian, $g_{\lambda}^{(k)}=K\left(\Delta^{k}(\lambda) ; \Delta^{k+1}(\lambda) ; \lambda\right)$ since this family satisfies the Pieri rule.

Example

$g_{332111111}^{(4)}$| 3 | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | 3 | | | | | | | |
| | | 2 | | | | | | |
| | | | 1 | | | | | |
| | | | | 1 | | | | |
| | | | | | 1 | | | |
| | | | | | | 1 | | |
| | | | | | | | 1 | |
| | | | | | | | | 1 |

$$
\Delta_{9}^{+} / \Delta^{4}(332111111), \Delta^{5}(332111111)
$$

Branching Positivity

Theorem (Blasiak-Morse-S., 2020)

Branching Positivity

Theorem (Blasiak-Morse-S., 2020)

The $g_{\lambda}^{(k)}$ are "shift invariant", i.e. for $\ell=\ell(\lambda)$

$$
G_{1^{\ell}}^{\perp} g_{\lambda+1^{\ell}}^{(k+1)}=g_{\lambda}^{(k)}
$$

Branching Positivity

Theorem (Blasiak-Morse-S., 2020)

The $g_{\lambda}^{(k)}$ are "shift invariant", i.e. for $\ell=\ell(\lambda)$

$$
G_{1^{\ell}}^{\perp} g_{\lambda+1^{\ell}}^{(k+1)}=g_{\lambda}^{(k)}
$$

Theorem (Blasiak-Morse-S., 2020)

The branching coefficients in

$$
g_{\lambda}^{(k)}=\sum_{\mu} a_{\lambda \mu} g_{\mu}^{(k+1)}
$$

satisfy $(-1)^{|\lambda|-|\mu|} a_{\lambda \mu} \in \mathbb{Z}_{\geq 0}$.

Future Directions

For $G_{\lambda}^{(k)}$ an affine Grothendieck polynomial (dual to $g_{\lambda}^{(k)}$),

Future Directions

For $G_{\lambda}^{(k)}$ an affine Grothendieck polynomial (dual to $g_{\lambda}^{(k)}$),
(1) Combinatorially describe dual Pieri rule:

$$
G_{1^{1}}^{\frac{1}{2}} g_{\lambda}^{(k)}=\sum_{\mu} ? ? g_{\mu}^{(k)} \Longleftrightarrow G_{1^{r}} G_{\mu}^{(k)}=\sum_{\lambda} ? ? G_{\lambda}^{(k)}, 1 \leq r \leq k .
$$

Future Directions

For $G_{\lambda}^{(k)}$ an affine Grothendieck polynomial (dual to $g_{\lambda}^{(k)}$),
(1) Combinatorially describe dual Pieri rule:

$$
G_{1^{1}}^{\frac{1}{\lambda}} g_{\lambda}^{(k)}=\sum_{\mu} ? ? g_{\mu}^{(k)} \Longleftrightarrow G_{1^{r}} G_{\mu}^{(k)}=\sum_{\lambda} ? ? G_{\lambda}^{(k)}, 1 \leq r \leq k .
$$

(2) Combinatorially describe branching coefficients: $g_{\lambda}^{(k)}=\sum_{\mu}$?? $g_{\mu}^{(k+1)}$.

Future Directions

For $G_{\lambda}^{(k)}$ an affine Grothendieck polynomial (dual to $g_{\lambda}^{(k)}$),
(1) Combinatorially describe dual Pieri rule:

$$
G_{1^{1}}^{\frac{1}{\prime}} g_{\lambda}^{(k)}=\sum_{\mu} ? ? g_{\mu}^{(k)} \Longleftrightarrow G_{1^{r}} G_{\mu}^{(k)}=\sum_{\lambda} ? ? G_{\lambda}^{(k)}, 1 \leq r \leq k .
$$

(2) Combinatorially describe branching coefficients: $g_{\lambda}^{(k)}=\sum_{\mu}$?? $g_{\mu}^{(k+1)}$.

- Combinatorially describe $g_{\lambda}^{(k)}=\sum_{\mu}$? ? $s_{\mu}^{(k)}$.

References

Thank you!

Anderson, David, Linda Chen, and Hsian-Hua Tseng. 2017. On the quantum K-ring of the flag manifold, preprint. arXiv: 1711.08414.

Blasiak, Jonah, Jennifer Morse, Anna Pun, and Daniel Summers. 2019. Catalan Functions and k-Schur Positivity, J. Amer. Math. Soc. 32, no. 4, 921-963.

Chen, Li-Chung. 2010. Skew-linked partitions and a representation theoretic model for k-Schur functions, Ph.D. thesis.

Ikeda, Takeshi, Shinsuke Iwao, and Toshiaki Maeno. 2018. Peterson Isomorphism in K-theory and Relativistic Toda Lattice, preprint. arXiv: 1703.08664.
Lam, Thomas. 2008. Schubert polynomials for the affine Grassmannian, J. Amer. Math. Soc. 21, no. 1, 259-281.
Lam, Thomas, Luc Lapointe, Jennifer Morse, and Mark Shimozono. 2010. Affine insertion and Pieri rules for the affine Grassmannian, Mem. Amer. Math. Soc. 208, no. 977.
Lam, Thomas, Anne Schilling, and Mark Shimozono. 2010. K-theory Schubert calculus of the affine Grassmannian, Compositio Math. 146, 811-852.

Lapointe, Luc, Alain Lascoux, and Jennifer Morse. 2003. Tableau atoms and a new Macdonald positivity conjecture, Duke Mathematical Journal 116, no. 1, 103-146.
Morse, Jennifer. 2011. Combinatorics of the K-theory of affine Grassmannians, Advances in Mathematics.

Panyushev, Dmitri I. 2010. Generalised Kostka-Foulkes polynomials and cohomology of line bundles on homogeneous vector bundles, Selecta Math. (N.S.) 16, no. 2, 315-342.

