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Root ideals

Ry = {a,-j [1<i<j< n} denotes the set of positive roots for GL,,
where Qjj = €j — €.
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Ry = {a,-j [1<i<j< n} denotes the set of positive roots for GL,,
where Qjj = €j — €.

A root ideal W C Ry is an upper order ideal of positive roots.

(12

45

VW = Roots above Dyck path



Symmetric functions and Schur functions

@ Let A(X) be the ring of symmetric functions in X = xq, xa, . ..
@ hy = hd(X) = ZilS"'Sid Xiy * Xy with hp =1 and hy =0 for d < 0.
e Forany v = (v1,...,7vn) € Z",

s, = S,Y(X) = det(h7,+j—i(X))1SiJ§"
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@ Let A(X) be the ring of symmetric functions in X = xq, xa, . ..
@ hy = hd(X) = ZilS"'Sid Xiy * Xy with hp =1 and hy =0 for d < 0.
e Forany v = (v1,...,7vn) € Z",

s, = S,Y(X) = det(h7,+j—i(X))1SiJ§”

Then,

. _ sgn (Y + p)Ssort(y4+p)—p if ¥+ p has distinct nonnegative parts,
K 0 otherwise,

e sort(/3) = weakly decreasing sequence obtained by sorting £,
@ sgn(/3) = sign of the shortest permutation taking /3 to sort(f).



Weyl symmetrization

Define the Weyl symmetrization operator o: Q[zi™, ..., zF'] — A(X) by
linearly extending
Z7 = s(X)

2

where 27 = z/* - Z)".



Modified Macdonald polynomials

The modified Macdonald polynomials I:IM = I:IM(X; q, t) are Schur positive
symmetric functions in X = xq,x2, ... over Q(q, t).

They differ from the integral form Macdonald polynomials by
HM(X; q, t) = tn(M)JM[ X0 q, t_I]'
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Modified Hall-Littlewood polynomials

When g = 0, the modified Macdonald polynomials reduce to the modified
Hall-Littlewood polynomials H,,(X;0,t).

Fx(X;0,t) = s4 + ts31 + t2sp0
2| HH

t' B
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A Catalan function for modified Hall-Littlewoods

B,, = set of roots above block diagonal matrix with block sizes pi(,y, - - -, 1

where z% = z;/z;.




Catalan functions for modified Hall-Littlewoods
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A Catalanimal formula for H,(X; q, t)
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A Catalanimal formula for H,(X; q, t)

[ ]

b |

bs | by

be | b R, = {a,-j € Ry | south(b;) = bj},
br | bs R, = {aj € Ry | south(b;) < b;}.

row reading order
by < by <+ < by

Theorem (Blasiak-Haiman-Morse-Pun-S.)

The modified Macdonald polynomial I:I# = I:Iu(X; q,t) is given by

H (1 _ qarm(b,-)+1t—leg(b,-)zi/zj) H (1 _ qtza)

wol 2 5 a,-jERu\ﬁu aeﬁu
= 1 DR n
[Toer. (1 - qz2) HaER“ (1-tz2)

‘R:Ez
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g = t = 1 specialization

II (- gmermeeatizz) 11 (- qezn)

wol|lz--z 3 €Ru\Ry .
! Ha€R+ (1 B qzo‘) HCVGR;L (1 a tza)

q:t:1w0' . HQGR}L\,E\;#(]. — za)Ha€§u(1 — za)
F T Tacr. (1= 29) ek, (1 — 29)
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q = 0 specialization

H (1 _ qarm(b;)+1 t—leg(b;)zi/zj) H (1 _ qtza)

N a;j€R.\Ry a€R,
e zp
Ha€R+ (1 B qza) HaeRu (1 B tza)

CI:0 Z]. e zn
— Wo
(HaeRp(l - tzo‘))
:I:IN(X;Ov t)
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Definition

V is the linear operator on symmetric functions satisfying
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Proof of formula for ":/u

Definition

V is the linear operator on symmetric functions satisfying
VA, = t"#Wg" ) H,, where n(u) = 32,1 — 1) pi.

o Start with the Haglund-Haiman-Loehr formula for A, as a sum of
LLT polynomials G, (X; q).

@ Apply wV to both sides.

e Use Catalanimal formula for wVG,(X; g) and collect terms.
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Let v = (v(1),- - -, Y(k)) be a tuple of skew shapes.




LLT Polynomials

Let v = (v(1),- - -, Y(k)) be a tuple of skew shapes.

@ The content of a box in row y, column x is x — y.
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LLT Polynomials

Let v = (v(1),- - -, Y(k)) be a tuple of skew shapes.
@ The content of a box in row y, column x is x — y.

@ Reading order. label boxes by, ..., b, by scanning each diagonal from
southwest to northeast, in order of increasing content.
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@ Reading order. label boxes by, ..., b, by scanning each diagonal from
southwest to northeast, in order of increasing content.

® A pair (a,b) € v is attacking if a precedes b in reading order and
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LLT Polynomials

@ A semistandard tableau on v is a map T: v — Z, which restricts to a
semistandard tableau on each ;).

@ An attacking inversion in T is an attacking pair (a, b) such
that T(a) > T(b).

The LLT polynomial indexed by a tuple of skew shapes v is
Gu(xiq)= > q™TxT,
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where inv(T) is the number of attacking inversions in T and x” = [],.,, x7(a)-
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Catalanimals

The Catalanimal indexed by Ry, Rt, Rgt € Ry and A € Z" is
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Catalanimals

The Catalanimal indexed by Ry, Rt, Rgt € Ry and A € Z" is

z> Haeth (1 — qtzo‘) >

H(Ro, Re, R ,/\):0'<
e HaeRq (1 - qza) [Tocr: (1 - tza)

With n = 3,

H(R:. Ry fens}, (1)) = o

2111 — gtz /z3) )
[li<icj<s( = azi/2)(1 — tzi/ z)
=51+ (g+t+¢° + gt + t2)so1 + (gt + ¢° + ¢°t + gt° + t3)s3
= wVe;s.



LLT Catalanimals

For a tuple of skew shapes v, the LLT Catalanimal H, = H(Rq, Rt, Rgt, )
is determined by

° R+2Rq2Rt2th,

® R} \ Ry = pairs of boxes in the same diagonal,

® Ry \ R: = the attacking pairs,

@ R:\ Rq: = pairs going between adjacent diagonals,

@ \: fill each diagonal D of v with
1 + x(D contains a row start) — x(D contains a row end).
Listing this filling in reading order gives .



LLT Catalanimals

B R: \ R, = pairs of boxes in the same diagonal,

B R, \ R: = the attacking pairs,

® R\ Rq: = pairs going between adjacent diagonals,
W Ry = all other pairs,

A: fill each diagonal D of v with

1+ x(D contains a row start) — x(D contains a row end).
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LLT Catalanimals

B R: \ R, = pairs of boxes in the same diagonal,

B R, \ R: = the attacking pairs,

® R\ Rq: = pairs going between adjacent diagonals,
W Ry = all other pairs,

A: fill each diagonal D of v with

1+ x(D contains a row start) — x(D contains a row end).

210

A, as a filling of v




LLT Catalanimals

Theorem (Blasiak-Haiman-Morse-Pun-S.)

Let v be a tuple of skew shapes and let H, = H(Rq, R¢, Rqt, \) be the
associated LLT Catalanimal. Then

VG, (X;q) = cowpolx(Hy)

2 HaEth (]‘ —qt za) )

= ¢, w pol 0'(
’ X HaeRq (1 o qza) HaeRt (1 B tza)

for some ¢, € +q”t”.




Haglund-Haiman-Loehr formula

Theorem (Haglund-Haiman-Loehr, 2005)

Au(X:q,t)=>" (H q_arm(“)tleg(“)“) Gu(u,0)(X: q),

D ueD
where
e the sum runs over all subsets D C {(i,j) € u|j > 1}, and

o v(u,D) = (M, ... vK) where k = iy is the number of columns of
p, and V1) is a ribbon of size Wi, i.e., box contents
{~1,-2,...,—puf}, and descent set Des(v()) = {—j| (i,j) € D}.




Haglund-Haiman-Loehr formula example

b
by | b3
by | bs

s

(][5} - T5] 1 /— e

[4] q—1t4 1= q—1t3 [4] q—1t3 ‘[2]4] t2
D={b,b,bs}  D={bz,bs} D = {b1, br} D = {b1, bs}
z /// //// 71315 // 315
E[[/ S0 ]~ , /
Tl g1t t Gt 1

\
oT=] -

G

D = {b} D = {bs} D= {bi} D=o
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Putting it all together

@ Take HHL formula I:IH = >_p a,09u(u,p) and apply wV.

@ By construction, all the LLT Catalanimals H,,(,, py appearing on the
LHS will have the same root ideal data (Ry, Rt, Rqt).

o Collect terms to get [[, p \R )(1 — gom(b)+1e—les(bi) 7,/ 7.) factor.
i ERu\Ry

H (1 _ qarm(b;)+l t—leg(bi)z,-/zj) H (1 — qtzo‘)

A, =wol|z- 2z 2y ERAR, ack, )
g HozER+ (1 - qza) l_LJzGRM (1 - tza)




A positivity conjecture

What can this formula tell us that other formulas for Macdonald
polynomials do not?



A positivity conjecture

What can this formula tell us that other formulas for Macdonald
polynomials do not?

H (1 _ qarm(b,-)+l tfleg(b,-)z’_/zj) H (1 _ qtzoc)
aijeRu\ﬁu ae§“ )
1_[@6;1?+ (1 - qza) HaeRM (1 - tza)

I:IL(LS) = wo ((Zl - Zn)s

Conjecture (Blasiak-Haiman-Morse-Pun-S.)

77(s) is

For any partition 1 and positive integer s, the symmetric function H,;
Schur positive. That is, the coefficients in

(S) — Z K(S) (q, t) s,(X)

satisfy K\)(q, t) € Ng, t].
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