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Root ideals

R+ =
{
αij | 1 ≤ i < j ≤ n

}
denotes the set of positive roots for GLn,

where αij = ϵi − ϵj .
(12)(13)(14)(15)

(23)(24)(25)

(34)(35)

(45)

A root ideal Ψ ⊆ R+ is an upper order ideal of positive roots.

(12)(13)(14)(15)
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(45)

Ψ = Roots above Dyck path
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Symmetric functions and Schur functions

Let Λ(X ) be the ring of symmetric functions in X = x1, x2, . . .

hd = hd(X ) =
∑

i1≤···≤id
xi1 · · · xid with h0 = 1 and hd = 0 for d < 0.

For any γ = (γ1, . . . , γn) ∈ Zn,

sγ = sγ(X ) = det(hγi+j−i (X ))1≤i ,j≤n

Then,

sγ =

{
sgn(γ + ρ)ssort(γ+ρ)−ρ if γ + ρ has distinct nonnegative parts,

0 otherwise,

sort(β) = weakly decreasing sequence obtained by sorting β,
sgn(β) = sign of the shortest permutation taking β to sort(β).
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Weyl symmetrization

Define the Weyl symmetrization operator σ : Q[z±1
1 , . . . , z±1

n ] → Λ(X ) by
linearly extending

zγ 7→ sγ(X )

where zγ = zγ11 · · · zγnn .



Modified Macdonald polynomials

The modified Macdonald polynomials H̃µ = H̃µ(X ; q, t) are Schur positive
symmetric functions in X = x1, x2, . . . over Q(q, t).

They differ from the integral form Macdonald polynomials by
H̃µ(X ; q, t) = tn(µ)Jµ[

X
1−t−1 ; q, t

−1].

H̃22 = s4+(q+ t+ qt)s31+(q2+ t2)s22+(qt+ q2t+ qt2)s211+ q2t2s1111

t0

t1

t2

q0 q1 q2
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Modified Hall-Littlewood polynomials

When q = 0, the modified Macdonald polynomials reduce to the modified
Hall-Littlewood polynomials H̃µ(X ; 0, t).

H̃22(X ; 0, t) = s4 + ts31 + t2s22

t0

t1

t2

q0 q1 q2



A Catalan function for modified Hall-Littlewoods

Bµ = set of roots above block diagonal matrix with block sizes µℓ(µ), . . . , µ1

B3321 =

Theorem (Weyman, Shimozono-Weyman)

H̃µ(X ; 0, t) = ωσ
( z1 · · · zn∏

α∈Bµ
(1− tzα)

)
,

where zα = zi/zj .
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Catalan functions for modified Hall-Littlewoods

b1

b2 b3

b4 b5 b6

b7 b8 b9

row reading order

b1 ≺ b2 ≺ · · · ≺ bn

Rµ :=
{
αij ∈ R+ | south(bi ) ⪯ bj

}
.

R3321 =

H̃µ(X ; 0, t) = ωσ
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)
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A Catalanimal formula for H̃µ(X ; q, t)

b1

b2

b3 b4

b5 b6

b7 b8

row reading order

b1 ≺ b2 ≺ · · · ≺ bn

Rµ :=
{
αij ∈ R+ | south(bi ) ⪯ bj

}
,

R̂µ :=
{
αij ∈ R+ | south(bi ) ≺ bj

}
.

Theorem (Blasiak-Haiman-Morse-Pun-S.)

The modified Macdonald polynomial H̃µ = H̃µ(X ; q, t) is given by

H̃µ = ωσ

(
z1 · · · zn

∏
αij∈Rµ\R̂µ

(
1− qarm(bi )+1t−leg(bi )zi/zj

) ∏
α∈R̂µ

(
1− qtzα

)
∏

α∈R+

(
1− qzα

)∏
α∈Rµ

(
1− tzα

) )
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Example
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Example

1 9 q z1
z2

1 9 qt91 z2
z3

1 9 q2t92 z3
z5

1 9 q z4
z6

1 9 q2t93 z5
z7

1 9 qt91 z6
z8

numerator factors 1− qarm+1t−legzi/zj
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q = t = 1 specialization

ωσ

(
z1 · · · zn

∏
αij∈Rµ\R̂µ

(
1− qarm(bi )+1t−leg(bi )zi/zj

) ∏
α∈R̂µ

(
1− qtzα

)
∏

α∈R+

(
1− qzα

)∏
α∈Rµ

(
1− tzα

) )
q=t=1→ ωσ

(
z1 · · · zn

∏
α∈Rµ\R̂µ

(1− zα)
∏

α∈R̂µ
(1− zα)∏

α∈R+
(1− zα)

∏
α∈Rµ

(1− zα)

)

=ωσ

(
z1 · · · zn∏

α∈R+
(1− zα)

)
=ωhn1

=en1



q = 0 specialization

ωσ

(
z1 · · · zn

∏
αij∈Rµ\R̂µ

(
1− qarm(bi )+1t−leg(bi )zi/zj

) ∏
α∈R̂µ

(
1− qtzα

)
∏

α∈R+

(
1− qzα

)∏
α∈Rµ

(
1− tzα

) )
q=0→ ωσ

(
z1 · · · zn∏

α∈Rµ
(1− tzα)

)
=H̃µ(X ; 0, t)



Proof of formula for H̃µ

Definition

∇ is the linear operator on symmetric functions satisfying
∇H̃µ = tn(µ)qn(µ

∗)H̃µ, where n(µ) =
∑

i (i − 1)µi .

Start with the Haglund-Haiman-Loehr formula for H̃µ as a sum of
LLT polynomials Gν(X ; q).

Apply ω∇ to both sides.

Use Catalanimal formula for ω∇Gν(X ; q) and collect terms.
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LLT Polynomials

Let ν = (ν(1), . . . , ν(k)) be a tuple of skew shapes.

The content of a box in row y , column x is x − y .

Reading order: label boxes b1, . . . , bn by scanning each diagonal from
southwest to northeast, in order of increasing content.

A pair (a, b) ∈ ν is attacking if a precedes b in reading order and

content(b) = content(a), or
content(b) = content(a) + 1 and a ∈ ν(i), b ∈ ν(j) with i > j .

ν =

(
,

)

Attacking pairs: (b2, b3), (b3, b4), (b4, b5), (b4, b6), (b5, b7), (b6, b7), (b7, b8)
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LLT Polynomials

A semistandard tableau on ν is a map T : ν → Z+ which restricts to a
semistandard tableau on each ν(i).

An attacking inversion in T is an attacking pair (a, b) such
that T (a) > T (b).

The LLT polynomial indexed by a tuple of skew shapes ν is

Gν(x ; q) =
∑

T∈SSYT(ν)

qinv(T )xT ,

where inv(T ) is the number of attacking inversions in T and xT =
∏

a∈ν xT (a).

T =

2 4

3 5

5 6

1 1

inv(T ) = 4, xT = x21 x2x3x4x
2
5 x6
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3 5

5 6

1 1

inv(T ) = 4, xT = x21 x2x3x4x
2
5 x6



Catalanimals

The Catalanimal indexed by Rq,Rt ,Rqt ⊆ R+ and λ ∈ Zn is

H(Rq,Rt ,Rqt , λ) = σ

( zλ
∏

α∈Rqt

(
1− qtzα

)∏
α∈Rq

(
1− qzα

)∏
α∈Rt

(
1− tzα

)).

With n = 3,

H(R+,R+, {α13}, (111)) = σ
( z111(1− qtz1/z3)∏

1≤i<j≤3(1− qzi/zj)(1− tzi/zj)

)
= s111 + (q + t + q2 + qt + t2)s21 + (qt + q3 + q2t + qt2 + t3)s3

= ω∇e3.
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LLT Catalanimals

For a tuple of skew shapes ν, the LLT Catalanimal Hν = H(Rq,Rt ,Rqt , λ)
is determined by

R+ ⊇ Rq ⊇ Rt ⊇ Rqt ,

R+ \ Rq = pairs of boxes in the same diagonal,

Rq \ Rt = the attacking pairs,

Rt \ Rqt = pairs going between adjacent diagonals,

λ: fill each diagonal D of ν with
1 + χ(D contains a row start)− χ(D contains a row end).
Listing this filling in reading order gives λ.



LLT Catalanimals

R+ \ Rq = pairs of boxes in the same diagonal,

Rq \ Rt = the attacking pairs,

Rt \ Rqt = pairs going between adjacent diagonals,

Rqt = all other pairs,

λ: fill each diagonal D of ν with
1 + χ(D contains a row start)− χ(D contains a row end).

b1 b2
b4 b7

b3 b6
b5 b8

ν

2

0

2

2

1

1

0

0



LLT Catalanimals

R+ \ Rq = pairs of boxes in the same diagonal,

Rq \ Rt = the attacking pairs,

Rt \ Rqt = pairs going between adjacent diagonals,

Rqt = all other pairs,

λ: fill each diagonal D of ν with
1 + χ(D contains a row start)− χ(D contains a row end).

2 0

2 0

2 1

1 0

λ, as a filling of ν

2

0

2

2

1

1

0

0



LLT Catalanimals

Theorem (Blasiak-Haiman-Morse-Pun-S.)

Let ν be a tuple of skew shapes and let Hν = H(Rq,Rt ,Rqt , λ) be the
associated LLT Catalanimal. Then

∇Gν(X ; q) = cν ω polX (Hν)

= cν ω polX σ

( zλ
∏

α∈Rqt

(
1− qt zα

)∏
α∈Rq

(
1− q zα

)∏
α∈Rt

(
1− t zα

))
for some cν ∈ ±qZtZ.



Haglund-Haiman-Loehr formula

Theorem (Haglund-Haiman-Loehr, 2005)

H̃µ(X ; q, t) =
∑
D

(∏
u∈D

q−arm(u)t leg(u)+1

)
Gν(µ,D)(X ; q) ,

where

the sum runs over all subsets D ⊆ {(i , j) ∈ µ | j > 1}, and
ν(µ,D) = (ν(1), . . . , ν(k)) where k = µ1 is the number of columns of
µ, and ν(i) is a ribbon of size µ∗

i , i.e., box contents
{−1,−2, . . . ,−µ∗

i }, and descent set Des(ν(i)) = {−j | (i , j) ∈ D}.



Haglund-Haiman-Loehr formula example

b1

b2 b3

b4 b5

µ

1

2

3

4

5

D = {b1, b2, b3}

q91t4
1 2

3

4

5

D = {b2, b3}

q91t3

1

2

3

4

5

D = {b1, b2}

q91t3
1

2

3

4

5

D = {b1, b3}
t2

1 2

3

4

5

D = {b2}

q91t2 1 2

3

4

5

D = {b3}

t
1

2

3

4

5

D = {b1}

t 1 2

3

4

5

D = ∅

1



Putting it all together

Take HHL formula H̃µ =
∑

D aµ,DGν(µ,D) and apply ω∇.

By construction, all the LLT Catalanimals Hν(µ,D) appearing on the
LHS will have the same root ideal data (Rq,Rt ,Rqt).

Collect terms to get
∏

αij∈Rµ\R̂µ)
(1− qarm(bi )+1t−leg(bi )zi/zj) factor.

H̃µ = ωσ

(
z1 · · · zn

∏
αij∈Rµ\R̂µ

(
1− qarm(bi )+1t−leg(bi )zi/zj

) ∏
α∈R̂µ

(
1− qtzα

)
∏

α∈R+

(
1− qzα

)∏
α∈Rµ

(
1− tzα

) )
.
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A positivity conjecture

What can this formula tell us that other formulas for Macdonald
polynomials do not?

H̃(s)
µ := ωσ

(
(z1 · · · zn)s

∏
αij∈Rµ\R̂µ

(
1− qarm(bi )+1t−leg(bi )zi/zj

) ∏
α∈R̂µ

(
1− qtzα

)
∏

α∈R+

(
1− qzα

)∏
α∈Rµ

(
1− tzα

) )

Conjecture (Blasiak-Haiman-Morse-Pun-S.)

For any partition µ and positive integer s, the symmetric function H̃
(s)
µ is

Schur positive. That is, the coefficients in

H̃(s)
µ =

∑
ν

K (s)
ν,µ(q, t) sν(X )

satisfy K
(s)
ν,µ(q, t) ∈ N[q, t].
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Thank you!
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