
Building Mathematical Bridges Between Symmetric
Functions

George H. Seelinger

Jefferson Scholars Foundation

ghs9ae@virginia.edu

28 November 2018

George H. Seelinger (JSF) Symmetric Functions 28 November 2018 1 / 15



Partitions of 5

How many ways can we write a positive integer as a sum of positive
integers?

5 →
4 + 1 →
3 + 2 →

3 + 1 + 1 →

2 + 2 + 1 →

2 + 1 + 1 + 1 →

1 + 1 + 1 + 1 + 1 →

We will use these diagrams to describe a type of symmetric function called
a “Schur function.”
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Raising Operators

To do this, we will need functions that change partition diagrams called
“raising operators.”

We can change partition diagrams by moving boxes.

R1,3

( )
=

R2,3

( )
=

If the result “does not make sense”, we get 0:

R1,4

( )
= 0
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Schur functions

We define a new class of functions. Given a partition diagram λ with ℓ
rows, we have definition

Definition

sλ =(1− R1,2)

(1− R1,3)(1− R2,3)

· · ·
(1− R1,ℓ)(1− R2,ℓ) · · · (1− Rℓ−2,ℓ)(1− Rℓ−1,ℓ)λ

Example

s = (1− R1,2)(1− R1,3)(1− R2,3)
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Example continued

Example

s = (1− R1,2)(1− R1,3)(1− R2,3)

Recall the foil method from high school:

(1− R1,2)(1− R1,3)(1− R2,3)

=(1− R1,2 − R1,3 + R1,2R1,3)(1− R2,3)

=1− R1,2 − R1,3 − R2,3 + R1,2R1,3 + R1,2R2,3 + R1,3R2,3 − R1,2R1,3R2,3

So, we must compute s =

(1−R1,2 −R1,3 −R2,3 +R1,2R1,3 +R1,2R2,3 +R1,3R2,3 −R1,2R1,3R2,3)
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Example continued

Example

s = (1− R1,2)(1− R1,3)(1− R2,3)

−R1,2( ) −R1,3( ) −R2,3( )
+R1,2R1,3( ) +R1,2R2,3( ) +R1,3R2,3( )

−R1,2R1,3R2,3( )

=
− − −
+ + +0

−0

Adding it all together, we get

Solution

s = − − +
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Why Schur functions?

Schur functions encode the possible ways certain abstract algebraic
objects appear in n-dimensional space. (If n = 3, we have 3D space.)

Schur functions make computer computations easier.

Problem

However, the formula for Schur functions is complicated. If we have
another formula for Schur functions, how can we prove they give the same
result?
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Multiplication for Symmetric Functions

Let us introduce a rule for multiplication of partition diagrams by
“stacking.”

Rule for Multiplication (Example)

· = = = ·

Schur functions are a sum of partition diagrams, so we can compute

Example

· s = · ( − − + )

= − − +

Problem

Result is in terms of partition diagrams, but we would like a result in terms
of Schur functions.
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The Pieri Rule

Example

· s = s + s + s + s

In general, we get the result in terms of Schur functions by finding all
ways to add the red boxes such that we only add at most one box to
each column.

We call this method the Pieri rule and it is a fundamental property of
Schur functions.
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Proof Technique

One approach to show two formulas for Schur functions are the same:

Proof technique

Base cases are equal Pieri rules are the same

Linear algebra

Functions are the same!
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What do I think about?

Most problems about Schur functions are solved.

Instead, I think about a class of functions called “type C dual affine
Stanley symmetric functions” which have similar properties to Schur
functions.

However, the current formula for these functions is not as concrete as
the formula I gave you for Schur functions.
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Type C dual affine Stanley symmetric functions

Start with “word” with letters given by colors, { , , }. For example, let’s
use w = .

We must find all “subword decompositions” of w that are also subwords of
ρ = or any of its “rotations” , , .

Example

| is a subword decomposition of w where each part appears as a
subword of ρ = , but is not a subword of ρ or any of its rotations.
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Example continued

Then, you take all such subword decompositions to get a formula

|
|
| |

→ → Q
(2)

= 4 ∗ + 8 ∗

But, unfortunately, you are not done!

Problem

You then have to take the “dual” of this function to get the Type C dual

affine Stanley symmetric function, P
(2)

. This process is not direct and
not computationally straightforward.
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What have I done?

I have a conjectured formula that describes type C dual affine Stanley

symetric functions (P
(n)
w ) directly using raising operators.

Computational evidence suggests my conjecture is correct.

However, proving the formulas are the same directly would be quite
hard, so instead I am seeking to use the Pieri rule approach

Base cases are equal Pieri rules are the same

Linear algebra

Functions are the same!
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Thank you for your support and for listening!
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Symmetric Functions?

I pulled the wool over your eyes. Our partition diagrams represent
polynomial functions with an infinite number of variables and an infinite
number of terms.

Dictionary

→ h (x1, x2, x3, . . .) = x1 + x2 + x3 + · · ·
→ h (x1, x2, x3, . . .) = x21 + x1x2 + x1x3 + · · ·

+x22 + x2x3 + · · ·
+x23 + x3x4 + · · ·

→ h (x1, x2, x3, . . .) = x31 + x21x2 + x21x3 + · · ·
...

s = h − h − h + h
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Applications?
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The “eightfold way” from particle physics is encoded in Schur functions by

s (eϵ1 , eϵ2 , eϵ3)
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