Schubert calculus and K-theoretic Catalan functions

George H. Seelinger (joint with J. Blasiak and J. Morse)

UVA Graduate Seminar

ghs9ae@virginia.edu

31 January 2020

- An overview of Schubert calculus
- ② Catalan functions: shedding new light on old problems
- In K-theoretic Catalan functions

Overview of Schubert Calculus Combinatorics

Geometric problem

Find $c_{\lambda\mu}^{\nu} = \#$ of points in intersection of subvarieties in a variety X.

Overview of Schubert Calculus Combinatorics

Geometric problem

Find $c_{\lambda\mu}^{\nu} = \#$ of points in intersection of subvarieties in a variety X.

Cohomology

Schubert basis $\{\sigma_{\lambda}\}$ for $H^*(X)$ with property $\sigma_{\lambda} \cup \sigma_{\mu} = \sum_{\nu} c^{\nu}_{\lambda\mu} \sigma_{\nu}$

Overview of Schubert Calculus Combinatorics

Geometric problem

Find $c_{\lambda\mu}^{\nu} = \#$ of points in intersection of subvarieties in a variety X.

Cohomology

Schubert basis $\{\sigma_{\lambda}\}$ for $H^*(X)$ with property $\sigma_{\lambda} \cup \sigma_{\mu} = \sum_{\nu} c^{\nu}_{\lambda\mu} \sigma_{\nu}$

Representatives

Special basis of polynomials $\{f_{\lambda}\}$ such that $f_{\lambda} \cdot f_{\mu} = \sum_{\nu} c_{\lambda\mu}^{\nu} f_{\nu}$

George H. Seelinger (UVA)

Combinatorial study of $\{f_{\lambda}\}$ enlightens the geometry (and cohomology).

Combinatorial study of $\{f_{\lambda}\}$ enlightens the geometry (and cohomology).

Goal

Identify $\{f_{\lambda}\}$ in explicit (simple) terms amenable to calculation and proofs.

 $X = \operatorname{Gr}_m(\mathbb{C}^{m+n}) = \{ \text{all } m \text{-dimensional subspaces of } \mathbb{C}^{n+m} \}.$

 $X = \operatorname{Gr}_m(\mathbb{C}^{m+n}) = \{ \text{all } m \text{-dimensional subspaces of } \mathbb{C}^{n+m} \}.$ Decomposes into Schubert varieties indexed by partitions $\lambda \subseteq (\underbrace{n, \dots, n}_m) = (n^m).$

 $X = \operatorname{Gr}_m(\mathbb{C}^{m+n}) = \{ \text{all } m \text{-dimensional subspaces of } \mathbb{C}^{n+m} \}.$ Decomposes into Schubert varieties indexed by partitions

$$\lambda \subseteq (\underbrace{n,\ldots,n}_{m}) = (n^{m}).$$

т

 $X = \operatorname{Gr}_m(\mathbb{C}^{m+n}) = \{ \text{all } m \text{-dimensional subspaces of } \mathbb{C}^{n+m} \}.$ Decomposes into Schubert varieties indexed by partitions

$$\lambda \subseteq (\underbrace{n,\ldots,n}_{m}) = (n^{m}).$$

•
$$H^*(\mathrm{Gr}_m(\mathbb{C}^{m+n})) = \bigoplus_{\lambda \subseteq (n^m)} \mathbb{Z}\sigma_\lambda$$
 as \mathbb{Z} -modules

 $X = \operatorname{Gr}_m(\mathbb{C}^{m+n}) = \{ \text{all } m \text{-dimensional subspaces of } \mathbb{C}^{n+m} \}.$ Decomposes into Schubert varieties indexed by partitions

$$\lambda \subseteq (\underbrace{n,\ldots,n}_{m}) = (n^{m}).$$

•
$$H^*(\operatorname{Gr}_m(\mathbb{C}^{m+n})) = \bigoplus_{\lambda \subseteq (n^m)} \mathbb{Z}\sigma_\lambda$$
 as \mathbb{Z} -modules
• $\sigma_\lambda \cup \sigma_\mu = \sum_{\nu} c^{\nu}_{\lambda\mu} \sigma_{\nu}$

 $X = \operatorname{Gr}_m(\mathbb{C}^{m+n}) = \{ \text{all } m \text{-dimensional subspaces of } \mathbb{C}^{n+m} \}.$ Decomposes into Schubert varieties indexed by partitions

$$\lambda \subseteq (\underbrace{n,\ldots,n}_{m}) = (n^{m}).$$

•
$$H^*(Gr_m(\mathbb{C}^{m+n})) = \bigoplus_{\lambda \subseteq (n^m)} \mathbb{Z}\sigma_\lambda$$
 as \mathbb{Z} -modules

•
$$\sigma_{\lambda} \cup \sigma_{\mu} = \sum_{\nu} c^{\nu}_{\lambda\mu} \sigma_{\nu}$$

 $c_{\lambda\mu}^{
u}$ =number of points in intersection of Schubert varieties.

(

 $X = \operatorname{Gr}_m(\mathbb{C}^{m+n}) = \{ \text{all } m \text{-dimensional subspaces of } \mathbb{C}^{n+m} \}.$ Decomposes into Schubert varieties indexed by partitions

$$\lambda \subseteq (\underbrace{n,\ldots,n}_{m}) = (n^{m}).$$

•
$$H^*(\mathrm{Gr}_m(\mathbb{C}^{m+n})) = \bigoplus_{\lambda \subseteq (n^m)} \mathbb{Z}\sigma_\lambda$$
 as \mathbb{Z} -modules

•
$$\sigma_{\lambda} \cup \sigma_{\mu} = \sum_{\nu} c^{\nu}_{\lambda\mu} \sigma_{\nu}$$

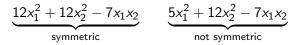
 $c_{\lambda\mu}^{\nu}$ =number of points in intersection of Schubert varieties. What are the structure constants $c_{\lambda\mu}^{\nu}$? $\Lambda_m = \mathbb{C}[x_1, \ldots, x_m]^{S_m}$ is the ring of symmetric polynomials in *m* variables and has bases indexed by partitions.

$$\underbrace{12x_1^2 + 12x_2^2 - 7x_1x_2}_{\text{symmetric}}$$

 $5x_1^2 + 12x_2^2 - 7x_1x_2$

not symmetric

 $\Lambda_m = \mathbb{C}[x_1, \ldots, x_m]^{S_m}$ is the ring of symmetric polynomials in *m* variables and has bases indexed by partitions.



There exists a basis of Λ_m denoted $\{s_\lambda\}_\lambda$ and a surjection of rings such that

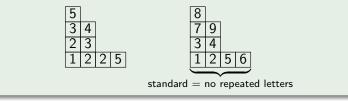
$$egin{aligned} &\Lambda_m o H^*(\mathrm{Gr}(m,n))\ &s_\lambda \mapsto egin{cases} \sigma_\lambda &\lambda \subseteq (n^m)\ 0 & ext{otherwise.} \end{aligned}$$

Cohomology structure: $\sigma_{\lambda} \leftrightarrow s_{\lambda}$ when $\lambda \subseteq (n^m)$.

$$s_{\lambda}s_{\mu} = \sum_{\nu \subseteq (n^m)} c_{\lambda\mu}^{\nu} s_{\nu} + \sum_{\nu \not\subseteq (n^m)} c_{\lambda\mu}^{\nu} s_{\nu} \leftrightarrow \sigma_{\lambda} \cup \sigma_{\mu} = \sum_{\nu \subseteq (n^m)} c_{\lambda\mu}^{\nu} \sigma_{\nu}$$

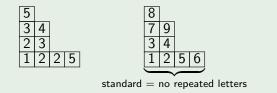
Example

Semistandard tableaux: columns increasing and rows non-decreasing.



Example

Semistandard tableaux: columns increasing and rows non-decreasing.



Schur function s_{λ} is a "weight generating function" of semistandard tableaux:

Schur functions s_{λ} (cont.)

Pieri rule

Determines multiplicative structure:

$$s_r s_\lambda = \sum (1 ext{ or } 0) s_
u$$

$$s_{\Box}s_{\Box} = s_{\Box} + s_{\Box} + s_{\Box}$$

Schur functions s_{λ} (cont.)

Pieri rule

Determines multiplicative structure:

$$s_r s_\lambda = \sum (1 \text{ or } 0) s_
u$$

 $s_\Box s_{\Box} = s_{\Box \bullet} + s_{\Box} + s_{\Box}$

Iterate Pieri rule

$$s_{\mu_1}\cdots s_{\mu_r}s_\lambda = \sum (\# ext{ known tableaux})s_
u$$

Schur functions s_{λ} (cont.)

Pieri rule

Determines multiplicative structure:

$$s_r s_\lambda = \sum (1 \text{ or } 0) s_
u$$

 $s_\Box s_{\Box} = s_{\Box \bullet} + s_{\Box} + s_{\Box}$

Iterate Pieri rule

$$s_{\mu_1}\cdots s_{\mu_r}s_\lambda = \sum (\# ext{ known tableaux})s_
u$$

Since $s_{\mu_1}\cdots s_{\mu_r}=s_{(\mu_1,\dots,\mu_r)}+$ lower order terms, subtract to get

$$s_{(\mu_1,...,\mu_r)}s_{\lambda} = \sum c_{\lambda\mu}^{\nu}s_{\nu}$$

for well-understood Littlewood-Richardson coefficients $c_{\lambda\mu}^{\nu}$.

Classical Schubert Calculus

Geometric problem

Find $c_{\lambda\mu}^{\nu} = \#$ of points in intersection of Schubert varieties in variety X = Gr(m, n).

Classical Schubert Calculus

Geometric problem

Find $c_{\lambda\mu}^{\nu} = \#$ of points in intersection of Schubert varieties in variety X = Gr(m, n).

Cohomology

Schubert basis $\{\sigma_{\lambda}\}_{\lambda \subseteq (n^m)}$ for $H^*(X)$ with property $\sigma_{\lambda} \cup \sigma_{\mu} = \sum_{\nu} c_{\lambda\mu}^{\nu} \sigma_{\nu}$

Classical Schubert Calculus

Geometric problem

Find $c_{\lambda\mu}^{\nu} = \#$ of points in intersection of Schubert varieties in variety X = Gr(m, n).

Cohomology

Schubert basis $\{\sigma_{\lambda}\}_{\lambda \subseteq (n^m)}$ for $H^*(X)$ with property $\sigma_{\lambda} \cup \sigma_{\mu} = \sum_{\nu} c_{\lambda\mu}^{\nu} \sigma_{\nu}$

Representatives

Special basis of Schur polynomials $\{s_{\lambda}\}$ such that $s_{\lambda} \cdot s_{\mu} = \sum_{\nu} c_{\lambda\mu}^{\nu} s_{\nu}$ for Littlewood-Richardson coefficients $c_{\lambda\mu}^{\nu}$.

• $X = FI_n(\mathbb{C}) = \{V_0 \subseteq V_1 \subseteq \cdots \subseteq V_n \mid \dim V_i = i\}$

- $X = FI_n(\mathbb{C}) = \{V_0 \subseteq V_1 \subseteq \cdots \subseteq V_n \mid \dim V_i = i\}$
- Decomposes into Schubert varieties indexed by $w \in S_n$.

- $X = Fl_n(\mathbb{C}) = \{V_0 \subseteq V_1 \subseteq \cdots \subseteq V_n \mid \dim V_i = i\}$
- Decomposes into Schubert varieties indexed by $w \in S_n$.
- $H^*(Fl_n(\mathbb{C}))$ supported by Schubert polynomials $\mathfrak{S}_w \in \mathbb{Z}[x_1, \ldots, x_n]$.

- $X = Fl_n(\mathbb{C}) = \{V_0 \subseteq V_1 \subseteq \cdots \subseteq V_n \mid \dim V_i = i\}$
- Decomposes into Schubert varieties indexed by $w \in S_n$.
- $H^*(Fl_n(\mathbb{C}))$ supported by Schubert polynomials $\mathfrak{S}_w \in \mathbb{Z}[x_1, \ldots, x_n]$.
- Structure constants $\mathfrak{S}_w\mathfrak{S}_u = c_{wu}^v\mathfrak{S}_v$ are combinatorially unknown.

There are many variations on classical Schubert calculus of the Grassmannian (Type A).

There are many variations on classical Schubert calculus of the Grassmannian (Type A).

f_{λ}
Schur functions
Schubert polynomimals
Quantum Schuberts
Schur-P and Q functions
(dual) k-Schur functions
Grothendieck polynomials
K-k-Schur functions

There are many variations on classical Schubert calculus of the Grassmannian (Type A).

Theory	f_λ
(Co)homology of Grassmannian	Schur functions
(Co)homology of flag variety	Schubert polynomimals
Quantum cohomology of flag variety	Quantum Schuberts
(Co)homology of Types BCD Grassmannian	Schur-P and Q functions
(Co)homology of affine Grassmannian	(dual) k-Schur functions
K-theory of Grassmannian	Grothendieck polynomials
K-homology of affine Grassmannian	K-k-Schur functions
And many more!	

• $QH^*(Fl_{k+1})$ quantum deformation of $H^*(Fl_{k+1})$ $(q \rightarrow 0)$.

- $QH^*(Fl_{k+1})$ quantum deformation of $H^*(Fl_{k+1})$ $(q \rightarrow 0)$.
- Supported by quantum Schubert polynomials \mathfrak{S}^Q_w .

- $QH^*(Fl_{k+1})$ quantum deformation of $H^*(Fl_{k+1})$ $(q \rightarrow 0)$.
- Supported by quantum Schubert polynomials \mathfrak{S}^Q_w .
- Peterson isomorphism

$$\Psi \colon \mathcal{Q}H^*(\mathit{Fl}_{k+1}) o H_*(\mathit{Gr}_{\mathit{SL}_{k+1}})_{\mathit{loc}}$$
 $\mathfrak{S}^{\mathcal{Q}}_w \mapsto rac{s^{(k)}_\lambda}{\prod_{i \in \mathit{Des}(w)} au_i}$

where $s_{\lambda}^{(k)}$ is a *k*-Schur function.

- $QH^*(Fl_{k+1})$ quantum deformation of $H^*(Fl_{k+1})$ $(q \rightarrow 0)$.
- Supported by quantum Schubert polynomials \mathfrak{S}^Q_w .
- Peterson isomorphism

$$\Psi \colon QH^*(Fl_{k+1}) o H_*(Gr_{SL_{k+1}})_{loc}$$
 $\mathfrak{S}^Q_w \mapsto rac{s^{(k)}_\lambda}{\prod_{i \in Des(w)} au_i}$

where $s_{\lambda}^{(k)}$ is a *k*-Schur function.

Upshot

Computations for Schubert polynomials can be moved into symmetric functions.

•
$$s_{\lambda}^{(k)}$$
 for $\lambda_1 \leq k$ a basis for $\mathbb{Z}[s_1, s_2, \ldots, s_k]$.

- $s_{\lambda}^{(k)}$ for $\lambda_1 \leq k$ a basis for $\mathbb{Z}[s_1, s_2, \dots, s_k]$.
- Schubert representatives for homology of affine Grassmannian, $\mathrm{Gr}_{\mathit{SL}_{k+1}}.$

- $s_{\lambda}^{(k)}$ for $\lambda_1 \leq k$ a basis for $\mathbb{Z}[s_1, s_2, \dots, s_k]$.
- Schubert representatives for homology of affine Grassmannian, $\operatorname{Gr}_{SL_{k+1}}$.
- Has a tableaux formulation from which some properties were proven.

•
$$s_{\lambda}^{(k)}$$
 for $\lambda_1 \leq k$ a basis for $\mathbb{Z}[s_1, s_2, \dots, s_k]$.

- Schubert representatives for homology of affine Grassmannian, $\operatorname{Gr}_{SL_{k+1}}$.
- Has a tableaux formulation from which some properties were proven.
- Branching

$$s_{\boxplus}^{(2)} = \underbrace{s_{\boxplus}}_{s_{\boxplus}^{(3)}} + \underbrace{s_{\boxplus}}_{s_{\boxplus}^{(3)}} + \underbrace{s_{\boxplus}}_{s_{\boxplus}^{(3)}}$$

•
$$s_{\lambda}^{(k)}$$
 for $\lambda_1 \leq k$ a basis for $\mathbb{Z}[s_1, s_2, \dots, s_k]$.

- Schubert representatives for homology of affine Grassmannian, $\operatorname{Gr}_{SL_{k+1}}$.
- Has a tableaux formulation from which some properties were proven.
- Branching

$$s_{\boxplus}^{(2)} = \underbrace{s_{\boxplus}}_{s_{\boxplus}^{(3)}} + \underbrace{s_{\boxplus}}_{s_{\boxplus}^{(3)}} + \underbrace{s_{\boxplus}}_{s_{\boxplus}^{(3)}}$$

•
$$s_{\lambda}^{(k)} = s_{\lambda}$$
 as $k \to \infty$.

•
$$s_{\lambda}^{(k)}$$
 for $\lambda_1 \leq k$ a basis for $\mathbb{Z}[s_1, s_2, \dots, s_k]$.

- Schubert representatives for homology of affine Grassmannian, $\operatorname{Gr}_{SL_{k+1}}$.
- Has a tableaux formulation from which some properties were proven.
- Branching

$$\mathbf{s}_{\Xi}^{(2)} = \underbrace{\mathbf{s}_{\Xi}}_{\mathbf{s}_{\Xi}^{(3)}} + \underbrace{\mathbf{s}_{\Xi}}_{\mathbf{s}_{\Xi}^{(3)}} + \underbrace{\mathbf{s}_{\Xi}}_{\mathbf{s}_{\Xi}^{(3)}}$$

•
$$s_{\lambda}^{(k)} = s_{\lambda}$$
 as $k \to \infty$.

• Has geometric meaning for embedding of affine Grassmannians.

•
$$s_{\lambda}^{(k)}$$
 for $\lambda_1 \leq k$ a basis for $\mathbb{Z}[s_1, s_2, \dots, s_k]$.

- Schubert representatives for homology of affine Grassmannian, $\operatorname{Gr}_{SL_{k+1}}$.
- Has a tableaux formulation from which some properties were proven.
- Branching

$$\mathbf{s}_{\square}^{(2)} = \underbrace{\mathbf{s}_{\square}}_{\mathbf{s}_{\square}^{(3)}} + \underbrace{\mathbf{s}_{\square}}_{\mathbf{s}_{\square}^{(3)}} + \underbrace{\mathbf{s}_{\square}}_{\mathbf{s}_{\square}^{(3)}}$$

•
$$s_{\lambda}^{(k)} = s_{\lambda}$$
 as $k \to \infty$.

- Has geometric meaning for embedding of affine Grassmannians.
- Definition with t important for Macdonald polynomials.

•
$$s_{\lambda}^{(k)}$$
 for $\lambda_1 \leq k$ a basis for $\mathbb{Z}[s_1, s_2, \dots, s_k]$.

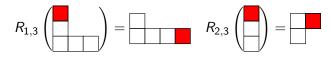
- Schubert representatives for homology of affine Grassmannian, $\operatorname{Gr}_{SL_{k+1}}$.
- Has a tableaux formulation from which some properties were proven.
- Branching

$$\mathbf{s}_{\square}^{(2)} = \underbrace{\mathbf{s}_{\square}}_{\mathbf{s}_{\square}^{(3)}} + \underbrace{\mathbf{s}_{\square}}_{\mathbf{s}_{\square}^{(3)}} + \underbrace{\mathbf{s}_{\square}}_{\mathbf{s}_{\square}^{(3)}}$$

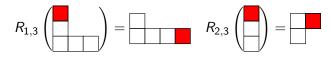
•
$$s_{\lambda}^{(k)} = s_{\lambda}$$
 as $k \to \infty$.

- Has geometric meaning for embedding of affine Grassmannians.
- Definition with *t* important for Macdonald polynomials.
- Many definitions. A new one makes proofs easier!

• Raising operators R_{i,j} act on diagrams

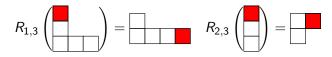


• Raising operators R_{i,j} act on diagrams



• Extend action to a symmetric function f_{λ} by $R_{i,j}(f_{\lambda}) = f_{\lambda + \epsilon_i - \epsilon_i}$.

• Raising operators R_{i,j} act on diagrams



Extend action to a symmetric function f_λ by R_{i,j}(f_λ) = f<sub>λ+ε_i-ε_j.
For h_λ = s_{λ1} ··· s_{λr}, we have the Jacobi-Trudi identity
</sub>

$$s_\lambda = \prod_{i < j} (1 - R_{ij}) h_\lambda$$

• Raising operators R_{i,j} act on diagrams

Extend action to a symmetric function f_λ by R_{i,j}(f_λ) = f<sub>λ+ε_i-ε_j.
For h_λ = s_{λ1} ··· s_{λr}, we have the Jacobi-Trudi identity
</sub>

$$s_\lambda = \prod_{i < j} (1 - R_{ij}) h_\lambda$$

$$s_{22} = (1 - R_{12})h_{22} = h_{22} - h_{31}$$

$$s_{211} = (1 - R_{12})(1 - R_{23})(1 - R_{13})h_{211}$$

$$= h_{211} - h_{301} - h_{220} - h_{310} + h_{310} + h_{32-1} + h_{400} - h_{41-1}$$

some terms cancel

George H. Seelinger (UVA)

Advantage: gives definition for Schur function indexed by any integer vector $\alpha \in \mathbb{Z}^{\ell}.$

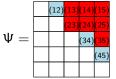
Advantage: gives definition for Schur function indexed by any integer vector $\alpha \in \mathbb{Z}^{\ell}$. Amazingly:

$$s_lpha = \prod_{i < j} (1 - R_{ij}) h_lpha = egin{cases} \pm s_\lambda & ext{for a partition } \lambda \ 0 \end{bmatrix}$$

For $\langle s_{1^r}^{\perp} s_{\lambda}, s_{\mu} \rangle = \langle s_{\lambda}, s_{1^r} s_{\mu} \rangle$,

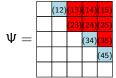
$$s_{1^r}^{\perp} s_{\lambda} = \sum_{S \subseteq [1,\ell], |S| = r} s_{\lambda - \epsilon_S}$$

A root ideal Ψ of type $A_{\ell-1}$ positive roots: given by Dyck path above the diagonal.



Roots above Dyck path Non-roots below

A root ideal Ψ of type $A_{\ell-1}$ positive roots: given by Dyck path above the diagonal.



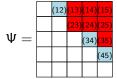
Roots above Dyck path Non-roots below

Catalan Function (Chen, 2010; Panyushev, 2010; Blasiak et al., 2019)

For Ψ and $\gamma \in \mathbb{Z}^{\ell}$

$$H(\Psi;\gamma)(x) = \prod_{(i,j)\in\Delta^+_\ell\setminus\Psi}(1-R_{ij})h_\gamma(x)$$

A root ideal Ψ of type $A_{\ell-1}$ positive roots: given by Dyck path above the diagonal.



Roots above Dyck path Non-roots below

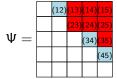
Catalan Function (Chen, 2010; Panyushev, 2010; Blasiak et al., 2019)

For Ψ and $\gamma \in \mathbb{Z}^{\ell}$

$$H(\Psi;\gamma)(x) = \prod_{(i,j)\in\Delta^+_\ell\setminus\Psi}(1-R_{ij})h_\gamma(x)$$

•
$$\Psi = \varnothing \Longrightarrow H(\varnothing; \gamma) = s_{\gamma}$$

A root ideal Ψ of type $A_{\ell-1}$ positive roots: given by Dyck path above the diagonal.



Roots above Dyck path Non-roots below

Catalan Function (Chen, 2010; Panyushev, 2010; Blasiak et al., 2019)

For Ψ and $\gamma \in \mathbb{Z}^{\ell}$

$$H(\Psi;\gamma)(x) = \prod_{(i,j)\in \Delta^+_\ell ackslash \Psi} (1-R_{ij})h_\gamma(x)$$

•
$$\Psi = \varnothing \Longrightarrow H(\varnothing; \gamma) = s_{\gamma}$$

• $\Psi =$ all roots $\Longrightarrow H(\Psi; \gamma) = h_{\gamma}$

k-Schur root ideal for λ

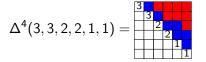
$$\Psi = \Delta^{k}(\lambda) = \{(i, j) : j > k - \lambda_{i}\}$$

= root ideal with $k - \lambda_{i}$ non-roots in row i

k-Schur root ideal for λ

$$\Psi = \Delta^{k}(\lambda) = \{(i, j) : j > k - \lambda_{i}\}$$

= root ideal with $k - \lambda_{i}$ non-roots in row i



 \leftarrow row *i* has $4 - \lambda_i$ non-roots

k-Schur root ideal for λ

$$\Psi = \Delta^{k}(\lambda) = \{(i, j) : j > k - \lambda_{i}\}$$

= root ideal with $k - \lambda_{i}$ non-roots in row i

$$\Delta^4(3,3,2,2,1,1) = \begin{array}{c} 3\\3\\2\\2\\2\\1\\1\\1\\1\\1\end{array} \leftarrow \text{row } i \text{ has } 4 - \lambda_i \text{ non-roots} \\ \\ \end{array}$$

• For partition λ with $\lambda_1 \leq k$, $s_{\lambda}^{(k)} = H(\Delta^k(\lambda); \lambda)$.

Key ingredient of branching proof:

Key ingredient of branching proof:

Shift Invariance (Blasiak et al., 2019)

For partition λ of length ℓ with $\lambda_1 \leq k$,

$$s_{1^\ell}^\perp s_{\lambda+1^\ell}^{(k+1)} = s_\lambda^{(k)}$$

where $\langle s_{1^{\ell}}^{\perp}f,g\rangle = \langle f,s_{1^{\ell}}g\rangle$.

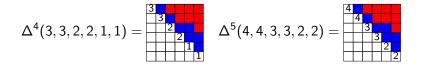
Key ingredient of branching proof:

Shift Invariance (Blasiak et al., 2019)

For partition λ of length ℓ with $\lambda_1 \leq k$,

$$s_{1^\ell}^\perp s_{\lambda+1^\ell}^{(k+1)} = s_\lambda^{(k)}$$

where $\langle s_{1^{\ell}}^{\perp}f,g\rangle = \langle f,s_{1^{\ell}}g\rangle.$



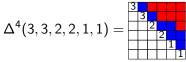
Key ingredient of branching proof:

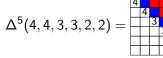
Shift Invariance (Blasiak et al., 2019)

For partition λ of length ℓ with $\lambda_1 < k$,

$$s_{1^\ell}^\perp s_{\lambda+1^\ell}^{(k+1)} = s_\lambda^{(k)}$$

where $\langle s_{1\ell}^{\perp}f,g\rangle = \langle f,s_{1\ell}g\rangle$.





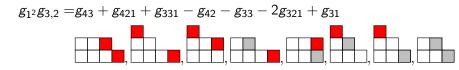
Branching is a special case of Pieri:

$$s_\lambda^{(k)}=s_{1^\ell}^\perp s_{\lambda+1^\ell}^{(k+1)}=\sum_\mu a_{\lambda+1^\ell,\mu}s_\mu^{(k+1)}$$

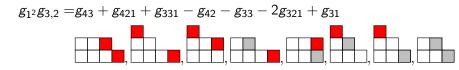
• Inhomogeneous basis: $g_{\lambda} = s_{\lambda} +$ lower degree terms.

- Inhomogeneous basis: $g_{\lambda} = s_{\lambda} +$ lower degree terms.
- Satisfies Pieri rule on "set-valued strips"

- Inhomogeneous basis: $g_{\lambda} = s_{\lambda} +$ lower degree terms.
- Satisfies Pieri rule on "set-valued strips"



- Inhomogeneous basis: $g_{\lambda} = s_{\lambda} +$ lower degree terms.
- Satisfies Pieri rule on "set-valued strips"



• $g_{\lambda} = \prod_{i < j} (1 - R_{ij}) k_{\lambda}$ for k_{λ} and inhomogeneous analogue of h_{λ} .

- Inhomogeneous basis: $g_{\lambda} = s_{\lambda} +$ lower degree terms.
- Satisfies Pieri rule on "set-valued strips"

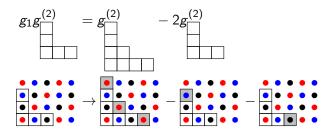


- $g_{\lambda} = \prod_{i < j} (1 R_{ij}) k_{\lambda}$ for k_{λ} and inhomogeneous analogue of h_{λ} .
- Dual to Grothendieck polynomials: Schubert representatives for K*(Gr(m, n))

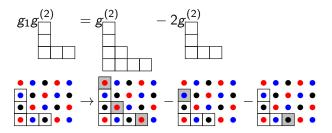
• Inhomogeneous basis: $g_{\lambda}^{(k)} = s_{\lambda}^{(k)} +$ lower degree terms

- \bullet Inhomogeneous basis: $g_{\lambda}^{(k)}=s_{\lambda}^{(k)}{+}{\rm lower}$ degree terms
- Satisfies Pieri rule on "affine set-valued strips"

- Inhomogeneous basis: $g_{\lambda}^{(k)} = s_{\lambda}^{(k)} + \text{lower degree terms}$
- Satisfies Pieri rule on "affine set-valued strips"

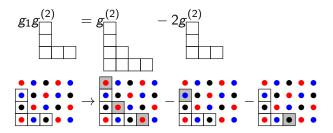


- Inhomogeneous basis: $g_{\lambda}^{(k)} = s_{\lambda}^{(k)} + \text{lower degree terms}$
- Satisfies Pieri rule on "affine set-valued strips"



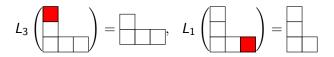
• Conjecture: $g_{\lambda}^{(k)}$ have branching into $g_{\mu}^{(k+1)}$.

- Inhomogeneous basis: $g_{\lambda}^{(k)} = s_{\lambda}^{(k)} + \text{lower degree terms}$
- Satisfies Pieri rule on "affine set-valued strips"



• Conjecture: $g_{\lambda}^{(k)}$ have branching into $g_{\mu}^{(k+1)}$.

Problem No direct formula for $g_{\lambda}^{(k)}$ Lowering Operators $L_j(f_{\lambda}) = f_{\lambda - \epsilon_i}$



K-theoretic Catalan function

Let $\Psi, \mathcal{L} \subseteq \Delta_\ell^+$ be order ideals of positive roots and $\gamma \in \mathbb{Z}^\ell$, then

$$\mathcal{K}(\Psi;\mathcal{L};\gamma) := \prod_{(i,j)\in\mathcal{L}} (1-L_j) \prod_{(i,j)\in\Delta^+_\ell ackslash \Psi} (1-\mathcal{R}_{ij}) k_\gamma$$

K-theoretic Catalan function

Let $\Psi, \mathcal{L} \subseteq \Delta_{\ell}^+$ be order ideals of positive roots and $\gamma \in \mathbb{Z}^{\ell}$, then

$$\mathcal{K}(\Psi;\mathcal{L};\gamma) := \prod_{(i,j)\in\mathcal{L}} (1-L_j) \prod_{(i,j)\in\Delta^+_\ell ackslash \Psi} (1-R_{ij}) k_\gamma$$

Example

non-roots of Ψ , roots of \mathcal{L}

· /	· /			
	(23)	(24)	(25)	
		(34)	(35)	
			(45)	

$$\begin{split} & \mathcal{K}(\Psi;\mathcal{L};54332) \\ &= (1-L_4)^2(1-L_5)^2 \\ &\cdot (1-R_{12})(1-R_{34})(1-R_{45})k_{54332} \end{split}$$

Affine K-Theory Representatives with Raising Operators

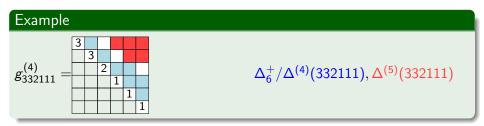
Answer (Blasiak-Morse-S., 2020)

Answer (Blasiak-Morse-S., 2020)

For K-homology of affine Grassmannian, $f_{\lambda} = g_{\lambda}^{(k)} = K(\Delta^{(k)}(\lambda); \Delta^{(k+1)}(\lambda); \lambda)$ since this family satisfies the correct Pieri rule.

Answer (Blasiak-Morse-S., 2020)

For K-homology of affine Grassmannian, $f_{\lambda} = g_{\lambda}^{(k)} = K(\Delta^{(k)}(\lambda); \Delta^{(k+1)}(\lambda); \lambda)$ since this family satisfies the correct Pieri rule.



Branching Positivity

Theorem (Blasiak-Morse-S., 2020)

Theorem (Blasiak-Morse-S., 2020)

The
$$g_\lambda^{(k)}$$
 are "shift invariant", i.e. for $\ell=\ell(\lambda)$
 $G_{1^\ell}^\perp g_{\lambda+1^\ell}^{(k+1)}=g_\lambda^{(k)}$

...

Theorem (Blasiak-Morse-S., 2020)

The
$$g_{\lambda}^{(k)}$$
 are "shift invariant", i.e. for $\ell = \ell(\lambda)$

$${\mathcal G}_{1^\ell}^\perp {\mathcal g}_{\lambda+1^\ell}^{(k+1)} = {\mathcal g}_\lambda^{(k)}$$

Theorem (Blasiak-Morse-S., 2020)

The branching coefficients in

$$g_\lambda^{(k)} = \sum_\mu \mathsf{a}_{\lambda\mu} \mathsf{g}_\mu^{(k+1)}$$

satisfy $(-1)^{|\lambda|-|\mu|}a_{\lambda\mu}\in\mathbb{Z}_{\geq0}.$

$$\Phi \colon \mathcal{QK}^*(\mathit{Fl}_{k+1}) o \mathcal{K}_*(\mathit{Gr}_{\mathit{SL}_{k+1}})_{\mathit{loc}}$$

$$\Phi \colon \mathcal{QK}^*(\mathit{Fl}_{k+1}) o \mathcal{K}_*(\mathit{Gr}_{\mathit{SL}_{k+1}})_{\mathit{loc}}$$

Conjecture (Ikeda et al., 2018)

For $w \in S_{k+1}$ and \mathfrak{G}^Q_w a "quantum Grothtendieck polynomial",

$$\Phi(\mathfrak{G}_w^Q) = \frac{\widetilde{g}_w}{\prod_{i \in Des(w)} \tau_i}$$

$$\Phi \colon \mathit{QK}^*(\mathit{Fl}_{k+1}) o \mathit{K}_*(\mathit{Gr}_{\mathit{SL}_{k+1}})_{\mathit{loc}}$$

Conjecture (Ikeda et al., 2018)

For $w \in S_{k+1}$ and \mathfrak{G}^Q_w a "quantum Grothtendieck polynomial",

$$\Phi(\mathfrak{G}^Q_w) = \frac{\widetilde{g}_w}{\prod_{i \in Des(w)} \tau_i}$$

satisfies
$$\widetilde{g}_w = g_\lambda^{(k)} + \sum_\mu a_{\lambda\mu} g_\mu^{(k)}$$
 such that $(-1)^{|\lambda| - |\mu|} a_{\lambda\mu} \in \mathbb{Z}_{\geq 0}$.

$$\Phi \colon \mathit{QK}^*(\mathit{Fl}_{k+1}) o \mathit{K}_*(\mathit{Gr}_{\mathit{SL}_{k+1}})_{\mathit{loc}}$$

Conjecture (Ikeda et al., 2018)

For $w \in S_{k+1}$ and \mathfrak{G}^Q_w a "quantum Grothtendieck polynomial",

$$\Phi(\mathfrak{G}^Q_w) = \frac{\widetilde{g}_w}{\prod_{i \in Des(w)} \tau_i}$$

satisfies
$$\widetilde{g}_w=g_\lambda^{(k)}+\sum_\mu a_{\lambda\mu}g_\mu^{(k)}$$
 such that $(-1)^{|\lambda|-|\mu|}a_{\lambda\mu}\in\mathbb{Z}_{\geq 0}.$

Theorem (Blasiak-Morse-S., 2020)

If $\lambda \subseteq (d^{k+1-d})$ for some $1 \leq d \leq k$, then $g_{\lambda}^{(k)} = g_{\lambda} \Longrightarrow$ conjecture is true for w a Grassmannian permutation.

$$\Phi \colon \mathcal{QK}^*(\mathit{Fl}_{k+1}) o \mathcal{K}_*(\mathit{Gr}_{\mathit{SL}_{k+1}})_{\mathit{loc}}$$

Conjecture (Ikeda et al., 2018)

For $w \in S_{k+1}$ and \mathfrak{G}_w^Q a "quantum Grothtendieck polynomial",

$$\Phi(\mathfrak{G}^Q_w) = \frac{\widetilde{g}_w}{\prod_{i \in Des(w)} \tau_i}$$

satisfies
$$\widetilde{g}_w=g_\lambda^{(k)}+\sum_\mu a_{\lambda\mu}g_\mu^{(k)}$$
 such that $(-1)^{|\lambda|-|\mu|}a_{\lambda\mu}\in\mathbb{Z}_{\geq 0}.$

Theorem (Blasiak-Morse-S., 2020)

If $\lambda \subseteq (d^{k+1-d})$ for some $1 \leq d \leq k$, then $g_{\lambda}^{(k)} = g_{\lambda} \Longrightarrow$ conjecture is true for w a Grassmannian permutation.

Conjecture (Blasiak-Morse-S., 2020)

$$\widetilde{g}_w = K(\Delta^k(\lambda); \Delta^k(\lambda); \lambda)$$

George H. Seelinger (UVA)

For $G_{\lambda}^{(k)}$ an affine Grothendieck polynomial (dual to $g_{\lambda}^{(k)}$),

For $G_{\lambda}^{(k)}$ an affine Grothendieck polynomial (dual to $g_{\lambda}^{(k)}$), Combinatorially describe dual Pieri rule:

$$G_{1^r}^{\perp}g_{\lambda}^{(k)} = \sum_{\mu}??g_{\mu}^{(k)} \iff G_{1^r}G_{\mu}^{(k)} = \sum_{\lambda}??G_{\lambda}^{(k)}, \ 1 \le r \le k.$$

- For $G_{\lambda}^{(k)}$ an affine Grothendieck polynomial (dual to $g_{\lambda}^{(k)}$),
 - Combinatorially describe dual Pieri rule: $G_{1^r}^{\perp}g_{\lambda}^{(k)} = \sum_{\mu}??g_{\mu}^{(k)} \iff G_{1^r}G_{\mu}^{(k)} = \sum_{\lambda}??G_{\lambda}^{(k)}, 1 \le r \le k.$
 - ② Combinatorially describe branching coefficients: $g_{\lambda}^{(k)} = \sum_{\mu} ?? g_{\mu}^{(k+1)}$.

- For $G_{\lambda}^{(k)}$ an affine Grothendieck polynomial (dual to $g_{\lambda}^{(k)}$),
 - Combinatorially describe dual Pieri rule: $G_{1^r}^{\perp}g_{\lambda}^{(k)} = \sum_{\mu}??g_{\mu}^{(k)} \iff G_{1^r}G_{\mu}^{(k)} = \sum_{\lambda}??G_{\lambda}^{(k)}, \ 1 \le r \le k.$
 - ② Combinatorially describe branching coefficients: $g_{\lambda}^{(k)} = \sum_{\mu} ?? g_{\mu}^{(k+1)}$.
 - Combinatorially describe $g_{\lambda}^{(k)} = \sum_{\mu} ?? s_{\mu}^{(k)}$.

- For $G_{\lambda}^{(k)}$ an affine Grothendieck polynomial (dual to $g_{\lambda}^{(k)}$),
 - Combinatorially describe dual Pieri rule: $G_{1^r}^{\perp}g_{\lambda}^{(k)} = \sum_{\mu}??g_{\mu}^{(k)} \iff G_{1^r}G_{\mu}^{(k)} = \sum_{\lambda}??G_{\lambda}^{(k)}, \ 1 \le r \le k.$
 - ② Combinatorially describe branching coefficients: $g_{\lambda}^{(k)} = \sum_{\mu} ?? g_{\mu}^{(k+1)}$.
 - Some combinatorially describe $g_{\lambda}^{(k)} = \sum_{\mu} ?? s_{\mu}^{(k)}$.
 - Oescribe the image of 𝔅^Q_w under Peterson isomorphism for all w ∈ S_{k+1}.

Thank you!

Blasiak, Jonah, Jennifer Morse, Anna Pun, and Daniel Summers. 2019. *Catalan Functions and k-Schur Positivity*, J. Amer. Math. Soc. **32**, no. 4, 921–963.

Chen, Li-Chung. 2010. Skew-linked partitions and a representation theoretic model for k-Schur functions, Ph.D. thesis.

Ikeda, Takeshi, Shinsuke Iwao, and Toshiaki Maeno. 2018. *Peterson Isomorphism in K-theory and Relativistic Toda Lattice*, preprint. arXiv: 1703.08664.

Lam, Thomas, Anne Schilling, and Mark Shimozono. 2010. *K-theory Schubert calculus of the affine Grassmannian*, Compositio Math. **146**, 811–852.

Morse, Jennifer. 2011. *Combinatorics of the K-theory of affine Grassmannians*, Advances in Mathematics.

Panyushev, Dmitri I. 2010. Generalised Kostka-Foulkes polynomials and cohomology of line bundles on homogeneous vector bundles, Selecta Math. (N.S.) **16**, no. 2, 315–342.