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1. Introduction

Classically, the Grassmannian ofm-planes in Cm+n, denotedX = Gr(m,n),
has a decomposition into Schubert cells, Ωλ for partitions λ = (λ1, . . . , λm)
with λi ≤ n. One can then define Schubert varieties Xλ = Ωλ, the clo-
sure of a Schubert cell. In turn, this gives a basis for the cohomology ring
H∗(X) =

⊕
λ Zσλ for σλ a representative of Xλ. Then, the coefficients in

the product of σλσµ expressed as a linear combination of Schubert represen-
tatives contain useful geometric information.

On the other hand, the ring of symmetric functions Λ = Z[h1(x), h2(x), . . .]
for hd(x) =

∑
i1≤i2≤···≤id xi1xi2 · · ·xid has a distinguished basis of Schur

functions indexed by partitions λ given by

sλ = det(hλi+j−i)1≤i,j≤ℓ

where h0(x) = 1 and hr = 0 for r < 0 by convention. The “Littlewood-
Richardson coefficients” cνλµ in the expansion sλsµ =

∑
ν c

ν
λµsν have many

combinatorial formulas and are well-studied. Thus, the following theorem is
quite useful for connecting geometry and combinatorics.

1.1. Theorem. There is a surjection of rings f : Λ → H∗(Gr(m,n)) given
by

f(sλ) =


σλ if λ ⊆ (n, . . . , n︸ ︷︷ ︸

m times

)

0 else

In this presentation, we seek to summarize how a special class of symmet-

ric functions called “k-Schur functions”, denoted s
(k)
λ (x), play a similar role

for the affine Grassmannian of SLk+1 and then explore their combinatorics.
We will make precise and summarize the original proof of [Lam08] that k-
Schur functions are the Schubert representatives of the affine Grassmannian
in Sections 2–4, culminating in Theorem 4.1. Then, in Section 5, we will
present a more combinatorial treatment of k-Schur functions. These two
parts can be read more-or-less independently.
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2. Preliminaries

2.1. Definition. The following is a summary of definitions in [Lam08, Sec-
tion 2.1].

• Let W be a crystallographic Coxeter group with simple generators
{si | i ∈ I}.

• Let Φ be the root system for W
• Let Φ+ be the positive roots and {αi | i ∈ I} be the simple roots.
• Let Q =

⊕
i∈I Zαi be the root lattice and Q∨ =

⊕
i∈I Zα∨

i be the
co-root lattice.

• Let h∗Z and hZ be the weight and co-weight lattice.
• Let ⟨·, ·⟩ : hZ × h∗Z → Z be the pairing between hZ and h∗Z
• Let Waff =W ⋉Q∨ be the affine Weyl group with additional gener-
ator s0.

• For λ ∈ Q∨, let tλ ∈ Waff be the corresponding translation element.
Note tλ · tµ = tλ+µ and wtλw

−1 = tw·λ for w ∈W .
• Let ℓ : Waff → N≥0 be the length function for Waff.
• LetW 0 be the minimal length coset representatives ofWaff/W , called
Grassmannian elements.

2.2. Proposition. There exists a natural bijection between W 0 and Q∨.

Proof. Each coset of Waff/W contains a unique element of Q∨ and a unique
minimal length coset representative. □

2.1. The affine Grassmannian. Let G be a simple and simply connected
complex algebraic group with Weyl group W . Let K be a maximal compact
subgroup and let T be a maximal torus in K. Let h∨Z be the weight lattice
and hZ be the co-weight lattice of T . In our case, we are primarily interested
in type A with G = SLn, W = Sn, K = SUn, T = (C×)n, Waff = S̃n is the
affine symmetric group, and affine simple roots are given by {αi | i ∈ Z/nZ}.

For F = C((t)) and O = CJtK, we define Gr = GrG = G(F )/G(O) to be
the affine Grassmannian.

2.3. Proposition. Gr is homotopy equivalent to ΩK. Thus, the two spaces
have isomorphic (co)homology theories.

Let S = Sym(h∗Z) be the symmetric algebra of h∗Z. From my last presen-
tation, we know that G(F ) has Bruhat decomposition

G(F ) =
⋃

w∈Waff

BwB

for Iwahori subgroup B. This induces a decomposition of Gr into Schubert
cells Ωw = BwG(O) ⊆ G(K)/G(O):

Gr =
⊔

w∈W 0

Ωw =
⋃

w∈W 0

Xw
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where Xw = Ωw are Schubert varieties. Then, we define the following

2.4. Definition. We denote the following Schubert classes in homology,
cohomology, equivariant homology, and equivariant cohomology as follows.

(a) Let σw ∈ H∗(Gr);
(b) Let σw ∈ H∗(Gr);
(c) Let σ(w) ∈ HT (Gr), the T -equivariant homology of Gr;

(d) Let σ(w) ∈ HT (Gr), the T -equivariant cohomology of Gr.

2.5. Remark. Note that S = Sym(h∗Z) = HT (pt).

3. Four Hopf Algebras

To show that (dual) k-Schur functions are Schubert representatives for
the (co)homology of the affine Grassmannian, we will string together various
results concerning four different Hopf algebras.

3.1. The affine nilHecke ring.

3.1. Definition. (a) Define Aaff to be the ring with 1 over Z given by
generators {Ai | i ∈ I ∪ {0}} ∪ {λ | λ ∈ h∗Z} and relations

Aiλ = (si · λ)Ai + ⟨λ, α∨
i ⟩ · 1 for λ ∈ h∗Z

AiAi = 0

(AiAj)
m = (AjAi)

m if (sisj)
m = (sjsi)

m

where the elements of h∗Z commute with each other.
(b) For w ∈ Waff, let w = si1 · · · siℓ be a reduced word for w. Then, we

define Aw := Ai1 · · ·Aiℓ .
(c) Let A0 = Z[Ai | i ∈ I ∪ {0}] ⊆ Aaff be the affine nilCoxeter algebra

generated by the Ai’s.

3.2. Proposition ([KK86]). {Aw | w ∈Waff} is an S-basis of Aaff.

There is a specialization map ϕ0 : Aaff → A0 given by

ϕ0

(∑
w

awAw

)
=
∑
w

ϕ0(aw)Aw

where ϕ0(s) evaluates the polynomial s ∈ S = Sym(h∗Z) at 0. (Recall ele-
ments in h∗Z are maps from hZ to Z.)

3.3. Proposition. Aaff is a Hopf algebra with coprodcut map ∆: Aaff →
Aaff ⊗S Aaff given by

∆(s) = 1⊗ s = s⊗ 1 s ∈ S

∆(Ai) = Ai ⊗ 1 + 1⊗Ai −Ai ⊗ αiAi
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3.2. Hopf algebra structure of HT (ΩK) and Peterson’s j-Homomorphism.
Over Frac(S), HT (ΩK) is spanned by the classes {ψt | t = tλ ∈ Q∨ ⊆Waff}.
Since ΩK is a group with T -equivariant multiplications,

3.4. Proposition. HT (ΩK) and HT (ΩK) have the structure of dal Hopf
algebras. Furthermore, HT (ΩK) has Hopf algebra structure given by

ψid = 1 ϵ(ψt) = 1 c(ψt) = ψt−1

ω(ψt) = ψt ⊗ ψt ψtψt′ = ψtt′

with scalars s ∈ S ⊆ HT (ΩK) central and c(s) = s. In particular, HT (ΩK)
is commutative and co-commutative as a Hopf algebra.

3.5. Definition. Let the Peterson subalgebra be ZAaff
(S), the centralizer of

S in Aaff.

3.6. Proposition. There is a Hopf algebra isomorphism j : HT (ΩK) →
ZAaff

(S) sending classes ψtλ 7→ tλ where tλ ∈ Q∨ ⊆Waff.

3.3. Affine Fomin-Stanley subalgebra.

3.7. Definition. The affine Fomin Stanley subalgebra is the subalgebra

B′ = {a ∈ A0 | ϕ0(as) = ϕ0(s)a for all s ∈ S}

The algebra B′ is a model for the homology H∗(Gr) in the following sense.

3.8. Proposition. Granting that ϕ0(j(σ(u))) ∈ B′,

(a) The map

H∗(Gr) → B′

σu 7→ ϕ0(j(σ(u)))

is an isomorphism of Hopf algebras.
(b) ϕ0(j(σ(u))) is the unique element in B′ with unique Grassmannian

term Au.

3.9. Corollary. B′ is a commutative algebra.

3.4. Combiatorial affine Fomin-Stanley subalgebra and symmetric
functions. From now on, we will restrict ourselves to type A.

3.10. Definition. We construct the combinatorial affine Fomin-Stanley sub-
algebra:

(a) We say a word a in alphabet Z/nZ is cyclically decreasing if no letter
is repeated and, if i, i + 1 both occur in a, then i + 1 occurs to the
west of i.

(b) Define hi ∈ A0 ⊆ Aaff for i ∈ {0, 1, . . . , n− 1} by

hi =
∑

w∈Waff
w cyclically decreasing

ℓ(w)=i

Aw
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(c) Let B = ⟨hi | i ∈ [0, n−1]⟩ be the combinatorial affine Fomin-Stanley
subalgebra of A0.

3.11. Example. The word s1s0s2 ∈ S̃3 is cyclically decreasing but s1s2s0 ∈
S̃3 is not. We also have that, for n = 4,

h2 = A3A2 +A3A1 +A0A3 +A2A1 +A2A0 +A1A0

3.12.Proposition. B is commutative and isomorphic to Λn = Z[h1, . . . , hn−1]
via

ψ : Λn → B
hi(x) 7→ hi

3.13. Definition. Let ⟨·, ·⟩ : A0 × A0 → Z be given by ⟨Aw, Av⟩ = δw,v. We
define the following symmetric functions.

(a) Let w ∈ Waff. We define the affine Stanley symmetric functions

F̃w(x) ∈ Λ by

F̃w(x) =
∑

a=(a1,a2,...,at)

⟨hathat−1 · · ·ha1 · 1, Aw⟩x
a1
1 x

a2
2 · · ·xatt

where the sum is over compositions of ℓ(w) satisfying ai ∈ [0, n− 1].

(b) Define the image of {F̃w(x) | w ∈W 0} in the quotient Λn = Λ/⟨mλ(x) |
λ1 ≥ n⟩ to be the affine Schur functions (where mλ(x) is the mono-
mial symmetric function indexed by λ).

(c) The k-Schur functions {s(k)w (x) | w ∈ W 0} are the dual basis of
Λn to the affine Schur functions under the Hall inner product where
k = n− 1.

(d) Let the non-commutative k-Schur functions be given by

s(k)w := ψ(s(k)w (x)) ∈ B

3.14. Remark. Affine Stanley symmetric functions “enumerate” all the
ways of factoring reduced words for w ∈ Waff into groups of “cyclically de-
creasing” words. In particular, the coefficient of x1 · · ·xℓ gives the number
of reduced words for w ∈Waff.

3.15. Example. For n = 3 = k + 1, we compute some non-commutative
k-Schur functions.

s
(k)
id = 1

s(k)s0 = h1 = A0 +A1 +A2

s(k)s1s0 = h2 = A02 +A21 +A10

s(k)s2s0 = h21 − h2 = A20 +A12 +A01

s(k)s2s1s0 = h2h1 = h1h2 = A021 +A010 +A102 +A121 +A202 +A210

s(k)s1s2s0 = h31 − h2h1 = A120 +A010 +A201 +A121 +A202 +A012
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3.16. Proposition. We observe the following.

(a) s
(k)
w has a unique Grassmannian term Aw.

(b) Λn and Λn are dual Hopf-algebras under the Hall-inner product.
Their Hopf algebra structure is inherited from the Hopf algebra struc-
ture of Λ with Hopf structure

∆Λ(hi(x)) =
∑
j≤i

hj(x)⊗ hi(y) ϵ(f(x)) = f(0) c(hi(x)) = (−1)iei(x)

(c) ψ is an isomorphism of Hopf algebras. Thus, h0 = Aid is the unit,
ϵ(b) is the coefficient of h0 when b is written as a polynomial in the
hi’s, and

∆B(hi) =
∑
j≤i

hj ⊗ hi−j .

3.17. Theorem ([Lam08, Theorem 7.4]). B and B′ are identical as subal-
gebras of A0. Furthermore, the two Hopf structures agree and we have for
each w ∈W 0,

ϕ0(j(σ(w))) = s(k)w .

Sketch of subalgebra equality. We will grant that B ⊆ B′ (for the non-trivial

proof, see [Lam08, Subsection 7.1]). By Proposition 3.16(a), s
(k)
w ∈ B has

a unique Grassmannain term Aw and by Proposition 3.8(b), ϕ0(j(σ(w)))
is the unique element in B′ with unique Grassmannian term Aw. Thus,

ϕ0(j(σ(w))) = s
(k)
w and so the s

(k)
w ’s span B′. Thus, B = B′. □

4. k-Schur functions as Schubert representatives

4.1. Theorem. [Lam08, Theorem 7.1]

(a) The map θ : H∗(Gr) → Λn given by

θ(σw) = s(k)w (x)

is an isomorphism of Hopf algebras.
(b) The map θ′ : H∗(Gr) → Λn given by

θ′(σw) = F̃w(x)

is an isomorphism of Hopf algebras.

Proof. Part (a) follows by compositing the following chain of isomorphisms

H∗(Gr)
∼
→ B′ 3.17= B ψ−1

→ Λn

and the statement or part (b) follows by duality. □
[Lam08] notes some interesting consequences of this theorem.
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• This identification gives a topological origin to the Hopf algebra
structure of Λ. In particular, while the product structure can be
given a topological description via the classical identification with
the cohomology of the Grassmannian, the coproduct structure has
no prior interpretation. In particular, the Hall inner product can be
interpreted as a pairing between homology and cohomology.

• The commutativity of B = B′ gives topological meaning to the sym-
metry of the affine Stanley symmetric functions (which include usual
Stanley symmetric functions as a special case) via the commutativity
of H∗(Gr), which follows from Gr being a double loop space.

5. Combinatorics of k-Schur functions

Historically, k-Schur functions were first introduced for the study of Mac-
donald polynomials in [LLM03]. From the symmetric function perspective,
k-Schur functions have an extra parameter t and were constructed to satisfy
the following conjecture.

5.1. Conjecture ([LLM03]). For µ a partition let Hµ(x; q, t) be the “modi-
fied” Macdonaly polynomials. Then, for any k ≥ µ1,

Hµ(x; q, t) =
∑
ν

K(k)
νµ (q, t)s

(k)
ν (x; t) s(k)ν =

∑
λ

π
(k)
λν (t)sλ(x)

satisfy K
(k)
νµ (q, t) ∈ N[q, t] and π(k)λν (t) ∈ N[t].

Note that [BMPS19] established that π
(k)
λν ∈ N[t], thus establishing one

part of the conjecture. In this presentation, we will specialize t = 1, thereby
recovering the k-Schur functions from the previous sections. The following
propositions and definitions come from [LM03,LM07], but our treatment is
a summary of [LLM+14].

5.2. Definition. We define the following types of partitions.

(a) A k-bounded partition λ is a partition with λ1 ≤ k.
(b) An r-core is a partition with where none of its cells have a hook-

length equal to r.

5.3. Example. Given two shapes

• • •
•

the left shape is a 4-core but the right shape is not. A hook of size 4 is given
by the dotted cells.

5.4. Proposition. There is a bijection p between the set of (k + 1)-cores
κ and k-bounded partitions given by deleting all cells of hook length greater
than k + 1 in κ and left justifying the remaining cells.
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Such a bijection is best understood via an example.

5.5. Example. For k + 1 = 4, highlight the cells of hook length ≤ 3 and
remove the remaining ones. Then, left justify.

7→ 7→

Now, recall the following.

5.6. Definition. The affine symmetric group S̃n is given by the generators
{si | i ∈ Z/nZ} satisfying the relations

s2i = 1, sisi+1si = si+1sisi+1, sisj = sjsi for i− j ̸≡ 0, 1, n− 1 mod n

with all indices considered modulo n.

5.7.Proposition. The Grassmannian elements of S̃n are the minimal length
coset representatives of S̃n/Sn for Sn = ⟨s1, . . . , sn⟩ and are characterized
by having all reduced words beginning with s0.

5.8. Definition. (a) Given a diagram representing a partition, say dg(µ),
the content of a cell c = (i, j) is given by j − i.

(b) For a k+1-core κ, the residue of a cell (i, j) is given by j−i mod k+1.
(c) We say a cell c = (i, j) is an addable corner of a partition µ if

dg(µ) ∪ {c} is a diagram for a partition.
(d) We say a cell c = (i, j) is a removable corner of a partition µ if

dg(µ) \ {c} is a diagram for a partition.
(e) For a (k + 1)-core, we call an addable (resp. removable) corner of

residue r and addable (resp. removable) r-corner.

5.9. Example. Consider the following 4-core with labelled residues.

κ = 0 1 2 3 0

3 0

2

κ has addable corners of residues 1 and 3 and removable corners of residues
0 and 2.

Then, we define the following action of S̃k+1 on k + 1-cores.

5.10. Definition. Given sr ∈ S̃k+1 and k + 1-core κ, we have

sr·κ =


κ+ all its addable r-corners if κ has at least one addable r-corner

κ− all its removable r-corners if κ has at least one removable r-corner

κ else.
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5.11. Proposition. There is a bijection t between S̃0
k+1 and k+1-cores given

by sending

w 7→ siℓ · · · si1 ·∅
for siℓ · · · si1 a reduced word of w.

5.12. Definition. The k-Schur functions s
(k)
λ (x) are the unique basis of

Λk+1 = Z[h1, . . . , hk] satisfying the following Pieri rule: for 0 ≤ r ≤ k and
wλ such that p(t(wλ)) = λ

hrs
(k)
λ (x) =

∑
u∈S̃k+1

u cyclically decreasing
ℓ(u)=r

ℓ(uwλ)=ℓ(wλ)+r

s
(k)
p(t(uwλ))

(x)

This definition is actually equivalent to Definition 3.13(c), but is not very
combinatorial, nor very explicit. However, we can work through our bijec-
tions to make it more combinatorial. To do this, we will define the notion
of “weak order” and “weak tableaux” on cores.

5.13. Definition. Consider the affine symmetric group S̃k+1.

(a) The (left) weak order on S̃k+1 is given by saying w ≤ v if there exists

some u ∈ S̃k+1 such that uw = v and ℓ(u) + ℓ(w) = ℓ(v).

(b) We says w is covered by v, denoted w ⋖ v, if there is some si ∈ S̃k+1

such that siw = v and ℓ(v) = ℓ(w) + 1.
(c) Given two k + 1-cores κ and τ , we say κ ⋖ τ if t−1(κ) ⋖ t−1(τ).

5.14. Example. The following is the beginning of the Hasse diagram for the
weak order on S̃0

3 and on the corresponding k + 1-cores.

∅

s0

s1s0 s2s0

s2s1s0 s1s2s0

s0s2s1s0 s2s1s2s0 s0s1s2s0

↔

∅

5.15. Proposition. Given two k + 1-cores κ and τ with κ ⊆ τ , then κ ⋖ τ
if and only if τ = siκ for some si ∈ S̃k+1.

Using this perspective, we will build up a kind of semistandard tableau
using the notion of horizontal strips. To motivate, we will first describe this
notion for partitions and semistandard tableau.
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5.16. Definition. Given two partitions λ and µ, we say λ and µ differ by a
horizontal strip of size r if µ \ λ consists of exactly r cells lying in distinct
columns.

From this notion, one can construct a semistandard tableau from a se-
quence of partitions differing by horizontal strips. E.g., consider the follow-
ing

∅ ⊆ ⊆ ⊆ ↔ ∅ ⊆ 1 1 1 ⊆ 1 1 1 2 2
2 2

⊆ 1 1 1 2 2 3
2 2 3
3

Thus, the chain above corresponds to

1 1 1 2 2 3
2 2 3
3

5.17. Definition. Given two k + 1-cores κ and τ , we say they differ by a
weak horizontal strip of size r ≤ k if

(a) τ \ κ is a horizontal strip of partitions,
(b) |p(τ)| = |p(κ)|+ r,
(c) and there are exactly r residues in the set of cells τ \ κ.

5.18. Proposition. For 0 ≤ r ≤ k, we have that

hrs
(k)
λ (x) =

∑
τ a k+1-core

τ=p−1(λ)+a weak horizontal r-strip

s
(k)
p(τ)(x) .

5.19. Definition. A weak tableau of shape κ and composition weight α is
a sequence of k + 1-cores ∅ = κ(0) ⊆ κ(1) ⊆ · · · ⊆ κ(ℓ(α)) = κ such that
κ(i) \ κ(i−1) is a weak horizontal strip of size αi.

5.20. Example. For k + 1 = 3, a weak tableau of shape (4, 2) and weight
(1, 1, 1, 1) is given by

∅ ⊆ ⊆ ⊆ ⊆ ↔ 1 2 3 4
3 4

Furthermore, a weak tableau of the same shape weight weight (2, 2) is given
by

∅ ⊆ ⊆ ↔ 1 1 2 2
2 2

From this, we get a combinatorial characterization of the affine Schur
functions, also called dual k-Schur functions.

5.21. Proposition. The dual k-Schur function F̃
(k)
λ (x) ∈ Λk+1 = Λ/⟨mλ |

λ1 ≥ k+1⟩ is the weight generating function of weak tableau of shape p−1(λ).
More preciesly,

F
(k)
λ (x) =

∑
α

∑
T a weak tableau of shape p−1(λ)

and weight α

xα
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where xα =
∏
i x

α
i .

There exist many other equivalent definitions of k-Schur functions and
their duals, including a characterization using the strong Bruhat order on
S̃k+1. However [BMPS19] makes use of a completely different definition
using Young’s “raising operators” to prove the Schur positivity of k-Schur
functions with a general parameter t.
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