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1. Introduction

The Kazhdan-Lusztig basis was introduced in [KL79]. We will define the
basis and give a proof of its existence and uniqueness, although we will
mainly follow the proof in [Soe97]. Since their introduction, the so-called
Kazhdan-Lusztig polynomials, which appear in the definition of the basis,
have appeared in many other fields of mathematics. For a more detailed
overview of connections, see [Bre03, p 5].

2. Preliminaries

We work with the Hecke algebra, for which we will give two presentations.

2.1. Definition. [Hum90, Section 7.4] Let A = Z[q, q−1]. Then, the Hecke
algebra H associated to a Weyl group W has a basis {Tw | w ∈ W} with
relations

(a) TxTy = Txy if ℓ(x) + ℓ(y) = ℓ(xy) and
(b) T 2

s = (q − 1)Ts + qTid for all simple reflections s ∈ W.

2.2.Remark. We need not restrictW to be a Weyl group. In full generality,
we can replace W with any Coxeter group.

For our purposes, it will also be convenient to work with the Hecke algebra

over an enlarged ring. Let v := q−
1
2 . Then, we have the following.

2.3. Proposition. The Hecke algebra over Z[v, v−1] is given as the associa-
tive algebra with generators {Hs} for Hs = vTs and relations

(a) H2
s = 1 + (v−1 − v)Hs and

(b) HsHt · · ·Hs = HtHs · · ·Ht or HsHtHs · · ·Ht = HtHsHt · · ·Hs if
st · · · s = ts · · · t or sts · · · t = tst · · · s, repsectively, for simple re-
flections s, t ∈ W

2.4. Proposition. The Hecke algebra over Z[v, v−1] has a basis given by

{Hw | w ∈ W} where Hw = vℓ(w)Tw. Furthermore, this basis has relation
HxHy = Hxy if ℓ(x) + ℓ(y) = ℓ(xy).
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2.5. Lemma. We have H−1
s = Hs + (v − v−1) and so all the Hx basis

elements are units in H.

Proof.
H2

s − (v−1 − v)Hs = 1 =⇒ Hs(Hs + (v − v−1)) = 1

□

2.6. Lemma. For simple reflection s ∈ W, if ℓ(xs) < ℓ(x), then

HxHs = Hxs + (v−1 − v)Hx .

Proof. We know that

Hx = HxsHs =⇒ HxHs = HxsH
2
s = Hxs(1+(v−1−v)Hs) = Hxs+(v−1−v)Hx

□

3. The Kazhdan-Lusztig Basis

3.1. Definition. Recall that A = Z[q, q−1].

(a) We define the Z-linear map, called the bar involution, : A → A given
by sending q 7→ q−1

(b) The Hecke algebra H admits an extension of the bar involution, say
ι : H → H, given by

ι(Tw) := T−1
w−1

for any w ∈ W. For convenience, we will overload notation and write

Tw := ι(Tw)

Note that ι(Hs) = v−1T−1
s = v−1(v2Ts − 1 + v2) = Hs − v−1 + v = H−1

s

and, similarly, ι(Hw) = H−1
w−1 . Then, we have an ι-invariant of the form

Cs := q−
1
2Ts − q

1
2Tid = Hs − v−1Hid

We can also introduce a similar ι-invariant of the form

C ′
s := Hs + vHid

This justifies why we introduced the H-basis in Proposition 2.4. In [Hum90,
p 158], it is noted that it could be tempting to construct further ι-invariants
by taking products of these Cs elements. However, if one has a word sts = tst
with s, t ∈ W both simple reflections and ℓ(sts) = 3 = ℓ(tst), then one
can check that CsCtCs ̸= CtCsCt. However, if we compute (still assuming
ℓ(sts) = 3)

CsCtCs−Ct = q−
3
2 (Tsts−q(Tst−Tts)+q2(1+q−1)(Ts+Tt)−q3(1+2q−1)Tid)

we get an ι-invariant expression where the s and t’s are interchangeable.
Similarly, we can compute

C ′
sC

′
tC

′
s − C ′

s = Hsts + v(Hts +Hst) + v2(Hs +Ht) + v3Hid

since vH2
s = Hs − v2Hs + vHid and so vH2

s − C ′
s = −v2Hs.
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This illustrates the problem more generally we wish to solve. For ev-
ery w ∈ W, we want to associate an ι-invariant element, Cw, which is a
linear combination of Tx for x ≤ w, thus giving us a basis. In order to fol-
low [Soe97], we will actually produce elements C ′

w as a linear combination
of Hx’s, but the idea remains the same. To do this, we first recall a partial
ordering on the Weyl group.

3.2. Definition. For u, v ∈ W, we say u ≤ v in the (strong) Bruhat order
on W if some substring of some reduced word for v is a reduced word for u.

3.3. Example. Let W = S3 = ⟨s1, s2⟩. Then, the Bruhat order is given by
the following poset.

s1s2s1

s1s2 s2s1

s1 s2

id

3.4. Theorem. [Soe97, Theorem 2.1] For each w ∈ W, there exists a unique
element C ′

w ∈ H having the following properties:

(a) ι(C ′
w) = C ′

w

(b) C ′
w ∈ Hw+

∑
x<w vZ[v]Hx where x < w in the (strong) Bruhat order.

Then, one may wish to construct

3.5. Example. (a) From the above, we already see that if s ∈ W is a
simple reflection, then it must be that

C ′
s = Hs + vHid

(b) We can compute the basis for S3 = ⟨s1, s2⟩ by hand. We know that
the simple reflections must be of the form.

C ′
s1 = Hs1 + vHid

C ′
s2 = Hs2 + vHid

Then, to form ι-invariants of length 2, we check

C ′
s1C

′
s2 = Hs1s2 + v(Hs1 +Hs2) + v2Hid

is ι-invariant. If we apply ι to this, we get

ι(C ′
s1C

′
s2) = Hs1s2 + (v − v−1)(Hs1 +Hs2) + (v − v−1)2 + v−1(Hs1 +Hs2 + 2(v − v−1)) + v−2

= Hs1s2 + v(Hs1 +Hs2) + (v − v−1)2 + 2(1− v−2) + v−2

= Hs1s2 + v(Hs1 +Hs2) + v2

So, by uniqueness, it must be C ′
s1s2 = C ′

s1C
′
s2 . A similar computation

gives C ′
s2s1 . For length 3, we already computed above that

C ′
s1s2s1 = C ′

s1C
′
s2C

′
s1 −C ′

s1 = Hs1s2s1 +v(Hs1s2 +Hs2s1)+v2(Hs1 +Hs2)+v3
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Proof of Theorem 3.4. We have already established the formula for C ′
s for s

a simple reflection. Now, we compute

HxC
′
s =

{
Hxs + vHx if xs > x;

Hxs + v−1Hx if xs < x

where the first case is immediate from the definition of the Hecke algebra
and the second case is a straightforward application of Lemma 2.6. To
show existence, we proceed by induction on the Bruhat order. Certainly,
C ′
id = Hid = 1. Now, let x ∈ W be given and suppose we know C ′

y exists
for all y < x. If x ̸= id, we can find a simple reflection s such that xs < x
and by induction, we get

C ′
xsC

′
s = Hx +

∑
y<x

hyHy

for some hy ∈ Z[v]. Then, we say

C ′
x = C ′

xsC
′
s −

∑
y<x

hy(0)C
′
y .

C ′
x is ι-invariant because it is a sum of ι-invariant elements and it lies in

Hx +
∑

y<x vZ[v]Hy since, if C ′
y = Hy +

∑
z<y hz,yHx for hz,y ∈ vZ[v], then

C ′
x = Hx +

∑
y<x

(
(hy − hy(0))Hy −

∑
z<y

hy(0)hz,yHz

)
.

For uniqueness, we prove the following.

3.6. Lemma. If H ∈
∑

y vZ[v]Hy is ι-invariant, then H = 0.

We haveHz ∈ C ′
z+
∑

y<z Z[v, v−1]C ′
y for the C

′
x elements described earlier

in the proof by the unitriangularity condition. Now, if H =
∑

y hyHy and

we choose z maximal such that hz ̸= 0, then ι(H) = H implies that hz = hz.
However, this contradicts hz ∈ vZ[v], so it must be that H = 0.

Thus, if there were two ι-invariant elements C ′
w and D′

w satisfying the
hypotheses of Theorem 3.4, then it must be that C ′

w − D′
w ∈ vZ[v] is ι-

invariant, but the lemma shows that C ′
w − D′

w = 0. Thus, uniqueness is
established. □

3.7. Definition. For x, y ∈ W, we define the Kazhdan-Lusztig polynomials
hy,x ∈ Z[v, v−1] by the equality

C ′
x =

∑
y

hy,xHy

3.8. Remark. These polynomials are related to the Kazhdan-Lusztig poly-
nomials in [KL79], denoted Py,x, by

hy,x = vℓ(x)−ℓ(y)Py,x
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3.9. Proposition. Let W be finite, w◦ ∈ W be the longest element, and
r = ℓ(w◦) its length. Then, we have C ′

w◦ =
∑

y∈W vr−ℓ(y)Hy.

3.1. Further Properties of Kazhdan-Lusztig Polynomials. Since their
introduction, the Kazhdan-Lusztig polynomials have been an area of intense
research. Now, much more is known than when they were first introduced.

3.10. Proposition. [KL80] For any Weyl group W and x, y ∈ W, we have
that the coefficients ai occurring in

Py,x(q) =
∑
i

aiq
i

satisfy ai ∈ Z≥0.

3.11. Remark. This has been proved by [EW14] for general Coxeter sys-
tems.

In [KL79], the following was conjectured. It was proven in [BB81] and [BK81].

3.12. Proposition. Given a semisimple Lie algebra g with Weyl group W,
for each w ∈ W, let Mw be the Verma module with heighest weight −w(ρ)−ρ
and let Lw be its unique irreducible quotient. Then, we have the equivalent
identities

(a) chLw =
∑

y≤w(−1)ℓ(w)+ℓ(y)Py,w(1) chMy

(b) chMw =
∑

y≤w Pw◦w,w◦y(1) chLy

where w◦ is the longest element of W.

Finally, there exists a geometric interpretation of the Kazhdan-Lusztig
polynomials using perverse sheaves.

3.2. Historical Note. Kazhdan and Lusztig were originally interested in
using the Kazhdan-Lusztig basis to construct representations of the Hecke
algebra, but their significance has extended far beyond this goal. Our ex-
poistion here does not follow [KL79] and our definitions do not match those
in [KL79], although it is straightforward to translate between [KL79] and
these notes. The proof given for existence and uniqueness here is simpler;
notably, this exposition does not include the R-polynomials. Such a proof
can be found in [Hum90].
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