KAZHDAN-LUSZTIG BASIS FOR HECKE ALGEBRAS A CLASS PRESENTATION FOR QUANTUM GROUPS

GEORGE H. SEELINGER

1. Introduction

The Kazhdan-Lusztig basis was introduced in [KL79]. We will define the basis and give a proof of its existence and uniqueness, although we will mainly follow the proof in [Soe97]. Since their introduction, the so-called Kazhdan-Lusztig polynomials, which appear in the definition of the basis, have appeared in many other fields of mathematics. For a more detailed overview of connections, see [Bre03, p 5].

2. Preliminaries

We work with the Hecke algebra, for which we will give two presentations.
2.1. Definition. [Hum90, Section 7.4] Let $A=\mathbb{Z}\left[q, q^{-1}\right]$. Then, the Hecke algebra \mathcal{H} associated to a Weyl group \mathcal{W} has a basis $\left\{T_{w} \mid w \in \mathcal{W}\right\}$ with relations
(a) $T_{x} T_{y}=T_{x y}$ if $\ell(x)+\ell(y)=\ell(x y)$ and
(b) $T_{s}^{2}=(q-1) T_{s}+q T_{i d}$ for all simple reflections $s \in \mathcal{W}$.
2.2. Remark. We need not restrict \mathcal{W} to be a Weyl group. In full generality, we can replace \mathcal{W} with any Coxeter group.

For our purposes, it will also be convenient to work with the Hecke algebra over an enlarged ring. Let $v:=q^{-\frac{1}{2}}$. Then, we have the following.
2.3. Proposition. The Hecke algebra over $\mathbb{Z}\left[v, v^{-1}\right]$ is given as the associative algebra with generators $\left\{H_{s}\right\}$ for $H_{s}=v T_{s}$ and relations
(a) $H_{s}^{2}=1+\left(v^{-1}-v\right) H_{s}$ and
(b) $H_{s} H_{t} \cdots H_{s}=H_{t} H_{s} \cdots H_{t}$ or $H_{s} H_{t} H_{s} \cdots H_{t}=H_{t} H_{s} H_{t} \cdots H_{s}$ if st $\cdots s=t s \cdots t$ or sts $\cdots t=t s t \cdots s$, repsectively, for simple reflections $s, t \in \mathcal{W}$
2.4. Proposition. The Hecke algebra over $\mathbb{Z}\left[v, v^{-1}\right]$ has a basis given by $\left\{H_{w} \mid w \in \mathcal{W}\right\}$ where $H_{w}=v^{\ell(w)} T_{w}$. Furthermore, this basis has relation $H_{x} H_{y}=H_{x y}$ if $\ell(x)+\ell(y)=\ell(x y)$.

[^0]2.5. Lemma. We have $H_{s}^{-1}=H_{s}+\left(v-v^{-1}\right)$ and so all the H_{x} basis elements are units in \mathcal{H}.

Proof.

$$
H_{s}^{2}-\left(v^{-1}-v\right) H_{s}=1 \Longrightarrow H_{s}\left(H_{s}+\left(v-v^{-1}\right)\right)=1
$$

2.6. Lemma. For simple reflection $s \in \mathcal{W}$, if $\ell(x s)<\ell(x)$, then

$$
H_{x} H_{s}=H_{x s}+\left(v^{-1}-v\right) H_{x}
$$

Proof. We know that
$H_{x}=H_{x s} H_{s} \Longrightarrow H_{x} H_{s}=H_{x s} H_{s}^{2}=H_{x s}\left(1+\left(v^{-1}-v\right) H_{s}\right)=H_{x s}+\left(v^{-1}-v\right) H_{x}$

3. The Kazhdan-Lusztig Basis

3.1. Definition. Recall that $A=\mathbb{Z}\left[q, q^{-1}\right]$.
(a) We define the \mathbb{Z}-linear map, called the bar involution, -: $A \rightarrow A$ given by sending $q \mapsto q^{-1}$
(b) The Hecke algebra \mathcal{H} admits an extension of the bar involution, say $\iota: \mathcal{H} \rightarrow \mathcal{H}$, given by

$$
\iota\left(T_{w}\right):=T_{w^{-1}}^{-1}
$$

for any $w \in \mathcal{W}$. For convenience, we will overload notation and write

$$
\overline{T_{w}}:=\iota\left(T_{w}\right)
$$

Note that $\iota\left(H_{s}\right)=v^{-1} T_{s}^{-1}=v^{-1}\left(v^{2} T_{s}-1+v^{2}\right)=H_{s}-v^{-1}+v=H_{s}^{-1}$ and, similarly, $\iota\left(H_{w}\right)=H_{w^{-1}}^{-1}$. Then, we have an ι-invariant of the form

$$
C_{s}:=q^{-\frac{1}{2}} T_{s}-q^{\frac{1}{2}} T_{i d}=H_{s}-v^{-1} H_{i d}
$$

We can also introduce a similar ι-invariant of the form

$$
C_{s}^{\prime}:=H_{s}+v H_{i d}
$$

This justifies why we introduced the H-basis in Proposition 2.4. In [Hum90, p 158], it is noted that it could be tempting to construct further ι-invariants by taking products of these C_{s} elements. However, if one has a word sts $=t s t$ with $s, t \in \mathcal{W}$ both simple reflections and $\ell(s t s)=3=\ell(t s t)$, then one can check that $C_{s} C_{t} C_{s} \neq C_{t} C_{s} C_{t}$. However, if we compute (still assuming $\ell(s t s)=3)$
$C_{s} C_{t} C_{s}-C_{t}=q^{-\frac{3}{2}}\left(T_{s t s}-q\left(T_{s t}-T_{t s}\right)+q^{2}\left(1+q^{-1}\right)\left(T_{s}+T_{t}\right)-q^{3}\left(1+2 q^{-1}\right) T_{i d}\right)$
we get an ι-invariant expression where the s and t 's are interchangeable. Similarly, we can compute

$$
C_{s}^{\prime} C_{t}^{\prime} C_{s}^{\prime}-C_{s}^{\prime}=H_{s t s}+v\left(H_{t s}+H_{s t}\right)+v^{2}\left(H_{s}+H_{t}\right)+v^{3} H_{i d}
$$

since $v H_{s}^{2}=H_{s}-v^{2} H_{s}+v H_{i d}$ and so $v H_{s}^{2}-C_{s}^{\prime}=-v^{2} H_{s}$.

This illustrates the problem more generally we wish to solve. For every $w \in \mathcal{W}$, we want to associate an ι-invariant element, C_{w}, which is a linear combination of T_{x} for $x \leq w$, thus giving us a basis. In order to follow [Soe97], we will actually produce elements C_{w}^{\prime} as a linear combination of H_{x} 's, but the idea remains the same. To do this, we first recall a partial ordering on the Weyl group.
3.2. Definition. For $u, v \in \mathcal{W}$, we say $u \leq v$ in the (strong) Bruhat order on \mathcal{W} if some substring of some reduced word for v is a reduced word for u.
3.3. Example. Let $\mathcal{W}=\mathfrak{S}_{3}=\left\langle s_{1}, s_{2}\right\rangle$. Then, the Bruhat order is given by the following poset.

3.4. Theorem. [Soe97, Theorem 2.1] For each $w \in \mathcal{W}$, there exists a unique element $C_{w}^{\prime} \in \mathcal{H}$ having the following properties:
(a) $\iota\left(C_{w}^{\prime}\right)=C_{w}^{\prime}$
(b) $C_{w}^{\prime} \in H_{w}+\sum_{x<w} v \mathbb{Z}[v] H_{x}$ where $x<w$ in the (strong) Bruhat order.

Then, one may wish to construct
3.5. Example. (a) From the above, we already see that if $s \in \mathcal{W}$ is a simple reflection, then it must be that

$$
C_{s}^{\prime}=H_{s}+v H_{i d}
$$

(b) We can compute the basis for $\mathfrak{S}_{3}=\left\langle s_{1}, s_{2}\right\rangle$ by hand. We know that the simple reflections must be of the form.

$$
\begin{aligned}
& C_{s_{1}}^{\prime}=H_{s_{1}}+v H_{i d} \\
& C_{s_{2}}^{\prime}=H_{s_{2}}+v H_{i d}
\end{aligned}
$$

Then, to form ι-invariants of length 2 , we check

$$
C_{s_{1}}^{\prime} C_{s_{2}}^{\prime}=H_{s_{1} s_{2}}+v\left(H_{s_{1}}+H_{s_{2}}\right)+v^{2} H_{i d}
$$

is ι-invariant. If we apply ι to this, we get

$$
\begin{aligned}
\iota\left(C_{s_{1}}^{\prime} C_{s_{2}}^{\prime}\right) & =H_{s_{1} s_{2}}+\left(v-v^{-1}\right)\left(H_{s_{1}}+H_{s_{2}}\right)+\left(v-v^{-1}\right)^{2}+v^{-1}\left(H_{s_{1}}+H_{s_{2}}+2\left(v-v^{-1}\right)\right)+v^{-2} \\
& =H_{s_{1} s_{2}}+v\left(H_{s_{1}}+H_{s_{2}}\right)+\left(v-v^{-1}\right)^{2}+2\left(1-v^{-2}\right)+v^{-2} \\
& =H_{s_{1} s_{2}}+v\left(H_{s_{1}}+H_{s_{2}}\right)+v^{2}
\end{aligned}
$$

So, by uniqueness, it must be $C_{s_{1} s_{2}}^{\prime}=C_{s_{1}}^{\prime} C_{s_{2}}^{\prime}$. A similar computation gives $C_{s_{2} s_{1}}^{\prime}$. For length 3, we already computed above that

$$
C_{s_{1} s_{2} s_{1}}^{\prime}=C_{s_{1}}^{\prime} C_{s_{2}}^{\prime} C_{s_{1}}^{\prime}-C_{s_{1}}^{\prime}=H_{s_{1} s_{2} s_{1}}+v\left(H_{s_{1} s_{2}}+H_{s_{2} s_{1}}\right)+v^{2}\left(H_{s_{1}}+H_{s_{2}}\right)+v^{3}
$$

Proof of Theorem 3.4. We have already established the formula for C_{s}^{\prime} for s a simple reflection. Now, we compute

$$
H_{x} C_{s}^{\prime}= \begin{cases}H_{x s}+v H_{x} & \text { if } x s>x \\ H_{x s}+v^{-1} H_{x} & \text { if } x s<x\end{cases}
$$

where the first case is immediate from the definition of the Hecke algebra and the second case is a straightforward application of Lemma 2.6. To show existence, we proceed by induction on the Bruhat order. Certainly, $C_{i d}^{\prime}=H_{i d}=1$. Now, let $x \in \mathcal{W}$ be given and suppose we know C_{y}^{\prime} exists for all $y<x$. If $x \neq i d$, we can find a simple reflection s such that $x s<x$ and by induction, we get

$$
C_{x s}^{\prime} C_{s}^{\prime}=H_{x}+\sum_{y<x} h_{y} H_{y}
$$

for some $h_{y} \in \mathbb{Z}[v]$. Then, we say

$$
C_{x}^{\prime}=C_{x s}^{\prime} C_{s}^{\prime}-\sum_{y<x} h_{y}(0) C_{y}^{\prime} .
$$

C_{x}^{\prime} is ι-invariant because it is a sum of ι-invariant elements and it lies in $H_{x}+\sum_{y<x} v \mathbb{Z}[v] H_{y}$ since, if $C_{y}^{\prime}=H_{y}+\sum_{z<y} h_{z, y} H_{x}$ for $h_{z, y} \in v \mathbb{Z}[v]$, then

$$
C_{x}^{\prime}=H_{x}+\sum_{y<x}\left(\left(h_{y}-h_{y}(0)\right) H_{y}-\sum_{z<y} h_{y}(0) h_{z, y} H_{z}\right) .
$$

For uniqueness, we prove the following.

3.6. Lemma. If $H \in \sum_{y} v \mathbb{Z}[v] H_{y}$ is ι-invariant, then $H=0$.

We have $H_{z} \in C_{z}^{\prime}+\sum_{y<z} \mathbb{Z}\left[v, v^{-1}\right] C_{y}^{\prime}$ for the C_{x}^{\prime} elements described earlier in the proof by the unitriangularity condition. Now, if $H=\sum_{y} h_{y} H_{y}$ and we choose z maximal such that $h_{z} \neq 0$, then $\iota(H)=H$ implies that $\overline{h_{z}}=h_{z}$. However, this contradicts $h_{z} \in v \mathbb{Z}[v]$, so it must be that $H=0$.

Thus, if there were two ι-invariant elements C_{w}^{\prime} and D_{w}^{\prime} satisfying the hypotheses of Theorem 3.4, then it must be that $C_{w}^{\prime}-D_{w}^{\prime} \in v \mathbb{Z}[v]$ is $\iota-$ invariant, but the lemma shows that $C_{w}^{\prime}-D_{w}^{\prime}=0$. Thus, uniqueness is established.
3.7. Definition. For $x, y \in \mathcal{W}$, we define the Kazhdan-Lusztig polynomials $h_{y, x} \in \mathbb{Z}\left[v, v^{-1}\right]$ by the equality

$$
C_{x}^{\prime}=\sum_{y} h_{y, x} H_{y}
$$

3.8. Remark. These polynomials are related to the Kazhdan-Lusztig polynomials in [KL79], denoted $P_{y, x}$, by

$$
h_{y, x}=v^{\ell(x)-\ell(y)} P_{y, x}
$$

3.9. Proposition. Let \mathcal{W} be finite, $w_{\circ} \in \mathcal{W}$ be the longest element, and $r=\ell\left(w_{\circ}\right)$ its length. Then, we have $C_{w_{\circ}}^{\prime}=\sum_{y \in \mathcal{W}} v^{r-\ell(y)} H_{y}$.
3.1. Further Properties of Kazhdan-Lusztig Polynomials. Since their introduction, the Kazhdan-Lusztig polynomials have been an area of intense research. Now, much more is known than when they were first introduced.
3.10. Proposition. [KL80] For any Weyl group \mathcal{W} and $x, y \in \mathcal{W}$, we have that the coefficients a_{i} occurring in

$$
P_{y, x}(q)=\sum_{i} a_{i} q^{i}
$$

satisfy $a_{i} \in \mathbb{Z}_{\geq 0}$.
3.11. Remark. This has been proved by [EW14] for general Coxeter systems.

In [KL79], the following was conjectured. It was proven in [BB81] and [BK81].
3.12. Proposition. Given a semisimple Lie algebra \mathfrak{g} with Weyl group \mathcal{W}, for each $w \in \mathcal{W}$, let M_{w} be the Verma module with heighest weight $-w(\rho)-\rho$ and let L_{w} be its unique irreducible quotient. Then, we have the equivalent identities
(a) ch $L_{w}=\sum_{y \leq w}(-1)^{\ell(w)+\ell(y)} P_{y, w}(1) \operatorname{ch} M_{y}$
(b) $\operatorname{ch} M_{w}=\sum_{y \leq w} P_{w_{\circ} w, w_{\circ} y}(1) \operatorname{ch} L_{y}$
where w_{\circ} is the longest element of \mathcal{W}.
Finally, there exists a geometric interpretation of the Kazhdan-Lusztig polynomials using perverse sheaves.
3.2. Historical Note. Kazhdan and Lusztig were originally interested in using the Kazhdan-Lusztig basis to construct representations of the Hecke algebra, but their significance has extended far beyond this goal. Our expoistion here does not follow [KL79] and our definitions do not match those in [KL79], although it is straightforward to translate between [KL79] and these notes. The proof given for existence and uniqueness here is simpler; notably, this exposition does not include the R-polynomials. Such a proof can be found in [Hum90].

References

[BB81] A. Beilinson and J. Bernstein, Localisation de \mathfrak{g}-modules, C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), no. 1, 15-18.
[BK81] J.-L. Brylinski and M. Kashiwara, Kazhdan-Lusztig conjecture and holonomic systems, Invent. Math. 64 (1981), no. 3, 387-410.
[Bre03] F. Brenti, Kazhdan-Lusztig polynomials: History, Problems, and Combinatorial Invariance, Séminaire Lotharingien de Combinatoire 49 (2003).
[EW14] B. Elias and G. Williamson, The Hodge theory of Soergel bimodules 180 (2014), 1089-136.
[Hum90] J. E. Humphreys, Reflection Groups and Coxeter Groups, 1990.
[KL79] D. Kazhdan and G. Lusztig, Representation of Coxeter Groups and Hecke Algebras, Inventiones math. 53 (1979), 165-184.
[KL80] \qquad , Schubert varieties and Poincaré duality, Geometry of the Laplace operator (Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979) (1980), 185-203.
[Soe97] W. Soergel, Kazhdan-Lusztig polynomials and a combinatoric for Tilting modules, Representation Theory 1 (1997), 83-114.
[Wil03] G. Williamson, Mind your P and Q-symbols: Why the Kazhdan-Lusztig basis of the Hecke algebra of type A is cellular, 2003.

[^0]: Date: December 9, 2019.

