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1. INTRODUCTION

The Kazhdan-Lusztig basis was introduced in [KL79]. We will define the
basis and give a proof of its existence and uniqueness, although we will
mainly follow the proof in [Soe97]. Since their introduction, the so-called
Kazhdan-Lusztig polynomials, which appear in the definition of the basis,
have appeared in many other fields of mathematics. For a more detailed
overview of connections, see [Bre03, p 5].

2. PRELIMINARIES

We work with the Hecke algebra, for which we will give two presentations.

2.1. Definition. [Hum90, Section 7.4] Let A = Z[q,q']. Then, the Hecke
algebra H associated to a Weyl group W has a basis {T3, | w € W} with
relations

(a) T, Ty = Tyy if £(z) + £(y) = {(zy) and
(b) T? = (¢ — 1)Ts + qT;q for all simple reflections s € W.

2.2. Remark. We need not restrict W to be a Weyl group. In full generality,
we can replace W with any Coxeter group.

For our purposes, it will also be convenient to work with the Hecke algebra
1
over an enlarged ring. Let v := ¢~ 2. Then, we have the following.

2.3. Proposition. The Hecke algebra over Z[v,v~!] is given as the associa-
tive algebra with generators {Hs} for Hs = vTs and relations

(a) H: =1+ (v —v)Hs and

(b) HHy---Hy, = HiHs---Hy or HiHiHs---Hy = HH;H;--- Hs if
st---s = ts---t or sts---t = tst---s, repsectively, for simple re-
flections s,t € W

2.4. Proposition. The Hecke algebra over Zlv,v~'] has a basis given by
{H, | w € W} where H,, = v'")T,,. Furthermore, this basis has relation
H.H, = Hyy if {(z) + {(y) = L(zy).
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2.5. Lemma. We have H;' = Hy + (v — v™!) and so all the H, basis
elements are units in H.

Proof.
H? -~ (v'—v)Hy=1= H,(Hs;+ (v —v1)) =1

2.6. Lemma. For simple reflection s € W, if {(xs) < £(z), then
HyHg = Hys + (v ! —0)H, .
Proof. We know that
Hy = HysHy = HyHy = HyoH? = Hy(14 (v —v)Hy) = Hps+ (v ' —v)H,
O

3. THE KAzZHDAN-LUSzZTIG BASIS

3.1. Definition. Recall that A = Z[q, ¢ ].

(a) We define the Z-linear map, called the bar involution, -: A — A given
by sending ¢ — ¢~ *

(b) The Hecke algebra H admits an extension of the bar involution, say
t:'H — H, given by

(Ty) == T;,ll
for any w € W. For convenience, we will overload notation and write
Ty = 1(Ty)

Note that «(Hs) = v 1T, =07} (0?Ts —1+v}) = Hs —v ' +v=H!
and, similarly, «(H,,) = H;El Then, we have an (-invariant of the form
Cs=q 2Ty — q>Tyg = Hy — v~ 'Hyg
We can also introduce a similar ¢-invariant of the form
C; = Hs + ’L)Hid

This justifies why we introduced the H-basis in Proposition 2.4. In [Hum90,
p 158], it is noted that it could be tempting to construct further t-invariants
by taking products of these C's elements. However, if one has a word sts = tst
with s,t € W both simple reflections and #(sts) = 3 = {(tst), then one
can check that Cs;CyCs # C;CsCy. However, if we compute (still assuming
{(sts) = 3)

CsCiCs—Cy = ¢ 2 (Taps— q(Tot — Ths) + 1+ ¢ ) (To+T)) —¢* (1+2¢ ) Th)

we get an c-invariant expression where the s and t’s are interchangeable.
Similarly, we can compute

C;CIgC; - C; = Hsts + U(Hts + Hst) + UQ(HS + Ht) + ’USHid
since vH? = Hy — v>Hy + vH;q and so vH? — C, = —v?H,.



This illustrates the problem more generally we wish to solve. For ev-
ery w € W, we want to associate an c-invariant element, C,, which is a
linear combination of T}, for x < w, thus giving us a basis. In order to fol-
low [S0e97], we will actually produce elements C!, as a linear combination
of H,’s, but the idea remains the same. To do this, we first recall a partial
ordering on the Weyl group.

3.2. Definition. For u,v € W, we say v < v in the (strong) Bruhat order
on W if some substring of some reduced word for v is a reduced word for u.

3.3. Example. Let W = &3 = (s1, s2). Then, the Bruhat order is given by
the following poset.

518251
A *~
5152 5251

\Z_d/

3.4. Theorem. [S0e97, Theorem 2.1] For each w € W, there exists a unique
element C), € H having the following properties:

(a) UCY,) = C,
(b) Ci, € Hy+> ", .\, VLZ[v|H, where x < w in the (strong) Bruhat order.

Then, one may wish to construct

3.5. Example. (a) From the above, we already see that if s € W is a
simple reflection, then it must be that

Cg = HS +7}Hid

(b) We can compute the basis for &3 = (s1, s2) by hand. We know that
the simple reflections must be of the form.

Cl, = H,, +vHyq
0;2 =H,, +vHq4
Then, to form t-invariants of length 2, we check
C. Cl, = Hy s, +v(Hs, + Hy,) + v*Hyg
is t-invariant. If we apply ¢ to this, we get
L(Cg10§2) = Hgs, + (v — v_l)(HS1 + Hg,) + (v — v_1)2 + v_l(HS1 + H,, + 2(v — v_l)) +p2
= Hyysp +0(Hs, + Hyy)) + (v — v )2 +2(1 —0v72) 4072
= Hys, +0(Hy, + Hy,) + 0

So, by uniqueness, it must be C%, ,, = C%, C?,. A similar computation
gives O

sp5,- For length 3, we already computed above that

C = CglcfQQC;l _021 = Hg sp5, +0(Hsys, +H8231)—1—v2(H51 + Hs,) +v?

5182851



Proof of Theorem 3.4. We have already established the formula for C?, for s
a simple reflection. Now, we compute

o H,s +vH, if xs > x;
N Hxs+v_le ifrs<z

where the first case is immediate from the definition of the Hecke algebra
and the second case is a straightforward application of Lemma 2.6. To
show existence, we proceed by induction on the Bruhat order. Certainly,
C!, = Hiqg = 1. Now, let x € W be given and suppose we know C’; exists
for all y < x. If x # id, we can find a simple reflection s such that zs < z
and by induction, we get

ChCo=Hy+ Y hyH,

zs~'s
y<xz

for some h, € Z[v]. Then, we say

= CLCl =) Iy

y<z
C! is (-invariant because it is a sum of (-invariant elements and it lies in
Hy+ 37, o, vZ[v|Hy since, if Cy = Hy + 3, heyHy for hy € vZ[v], then
C;:HerZ(h—h y— Y hy(0 hzyH>
y<x z<y

For uniqueness, we prove the following.

3.6. Lemma. If H € > vZ[v]H, is t-invariant, then H = 0.

We have H, € C+>_, . Z
in the proof by the unitriangularity condition. Now, if H = Zy hyH, and
we choose z maximal such that h, # 0, then «(H) = H implies that h, = h..
However, this contradicts h, € vZ[v], so it must be that H = 0.

Thus, if there were two t-invariant elements C!, and D!, satisfying the
hypotheses of Theorem 3.4, then it must be that C!, — D, € vZ[v] is ¢~

invariant, but the lemma shows that C|, — D) = 0. Thus, uniqueness is
established. 0

[v,071]C} for the C, elements described earlier

3.7. Definition. For z,y € W, we define the Kazhdan-Lusztig polynomials
hy.» € Z[v,v~ '] by the equality

C; = Z hy,mHy
Yy

3.8. Remark. These polynomials are related to the Kazhdan-Lusztig poly-
nomials in [KL79], denoted P, ., by

hy s = 0@~ p



3.9. Proposition. Let W be finite, wo, € W be the longest element, and
r = {(wo) its length. Then, we have C}, =3 oW H,.

3.1. Further Properties of Kazhdan-Lusztig Polynomials. Since their
introduction, the Kazhdan-Lusztig polynomials have been an area of intense
research. Now, much more is known than when they were first introduced.

3.10. Proposition. [KL80] For any Weyl group W and x,y € W, we have
that the coefficients a; occurring in

Pya(q) = Z aiq’
i

satisfy a; € Z>o.

3.11. Remark. This has been proved by [EW14] for general Coxeter sys-
tems.

In [KL79], the following was conjectured. It was proven in [BB81] and [BK81].

3.12. Proposition. Given a semisimple Lie algebra g with Weyl group W,
for each w € W, let M,, be the Verma module with heighest weight —w(p)—p
and let Ly, be its unique irreducible quotient. Then, we have the equivalent
identities

(a) ch Ly = Zygw(—l)g(w)+é(y)Py7W(1) ch M,
(b) Ch Mw - Zygw Pwow,woy(l) Ch Ly

where w, is the longest element of W.

Finally, there exists a geometric interpretation of the Kazhdan-Lusztig
polynomials using perverse sheaves.

3.2. Historical Note. Kazhdan and Lusztig were originally interested in
using the Kazhdan-Lusztig basis to construct representations of the Hecke
algebra, but their significance has extended far beyond this goal. Our ex-
poistion here does not follow [KL79] and our definitions do not match those
in [KL79], although it is straightforward to translate between [KL79] and
these notes. The proof given for existence and uniqueness here is simpler;
notably, this exposition does not include the R-polynomials. Such a proof
can be found in [Hum90].
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