A raising operator formula for Macdonald polynomials via LLT polynomials in the elliptic Hall algebra

George H. Seelinger

joint work with J. Blasiak, M. Haiman, J. Morse, and A. Pun

ghseeli@umich.edu
Loyola University Chicago TACO Seminar Based on arXiv:2112.07063 and arXiv:2307.06517

October 4, 2023

Glad to be back

Graduation May 2015

Outline

(1) Background on symmetric functions and Macdonald polynomials
(2) A new formula for Macdonald polynomials
(3) LLT polynomials in the elliptic Hall algebra

Symmetric Group

- Permutations $\sigma:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\}$:

Symmetric Group

- Permutations $\sigma:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\}$:

$$
\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 3 & 1 & 4
\end{array}\right)=
$$

Symmetric Group

- Permutations $\sigma:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\}$:

$$
\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 3 & 1 & 4
\end{array}\right)=0_{0}^{9}
$$

- For $f \in \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$ multivariate polynomial, $\sigma \in S_{n}$ acts as

$$
\sigma . f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=f\left(x_{\sigma(1)}, x_{\sigma(2)}, \ldots, x_{\sigma(n)}\right)
$$

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1
\end{array}\right)\left(5 x_{1}^{2}+5 x_{2}^{2}+8 x_{3}^{2}\right)=8 x_{1}^{2}+5 x_{2}^{2}+5 x_{3}^{2}
$$

Symmetric Polynomials

- Polynomials $f \in \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$ satisfying $\sigma . f=f$ for all $\sigma \in S_{n}$.

Symmetric Polynomials

- Polynomials $f \in \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$ satisfying $\sigma . f=f$ for all $\sigma \in S_{n}$.

Generators

$$
e_{r}=\sum_{i_{1}<i_{2}<\cdots<i_{r}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{r}} \text { or } h_{r}=\sum_{i_{1} \leq i_{2} \leq \cdots \leq i_{r}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{r}}
$$

Symmetric Polynomials

- Polynomials $f \in \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$ satisfying $\sigma . f=f$ for all $\sigma \in S_{n}$.

Generators

$$
e_{r}=\sum_{i_{1}<i_{2}<\cdots<i_{r}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{r}} \text { or } h_{r}=\sum_{i_{1} \leq i_{2} \leq \cdots \leq i_{r}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{r}}
$$

- E.g. for $n=3$,

$$
\begin{aligned}
& e_{1}=x_{1}+x_{2}+x_{3}=h_{1} \\
& e_{2}=x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3} h_{2}=x_{1}^{2}+x_{1} x_{2}+x_{1} x_{3}+x_{2}^{2}+x_{2} x_{3}+x_{3}^{2} \\
& e_{3}=x_{1} x_{2} x_{3} h_{3}=x_{1}^{3}+x_{1}^{2} x_{2}+x_{1}^{2} x_{3}+x_{1} x_{2}^{2}+\cdots
\end{aligned}
$$

Symmetric Polynomials

- Polynomials $f \in \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$ satisfying $\sigma . f=f$ for all $\sigma \in S_{n}$.

Generators

$$
e_{r}=\sum_{i_{1}<i_{2}<\cdots<i_{r}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{r}} \text { or } h_{r}=\sum_{i_{1} \leq i_{2} \leq \cdots \leq i_{r}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{r}}
$$

- E.g. for $n=3$,

$$
\begin{array}{cl}
e_{1}=x_{1}+x_{2}+x_{3}=h_{1} \\
e_{2}=x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3} & h_{2}=x_{1}^{2}+x_{1} x_{2}+x_{1} x_{3}+x_{2}^{2}+x_{2} x_{3}+x_{3}^{2} \\
e_{3}=x_{1} x_{2} x_{3} & h_{3}=x_{1}^{3}+x_{1}^{2} x_{2}+x_{1}^{2} x_{3}+x_{1} x_{2}^{2}+\cdots
\end{array}
$$

- Let $\Lambda=\mathbb{Q}\left[e_{1}, e_{2}, \ldots\right]=\mathbb{Q}\left[h_{1}, h_{2}, \ldots\right]$. Call these "symmetric functions."

Symmetric Polynomials

- Polynomials $f \in \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$ satisfying $\sigma . f=f$ for all $\sigma \in S_{n}$.

Generators

$$
e_{r}=\sum_{i_{1}<i_{2}<\cdots<i_{r}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{r}} \text { or } h_{r}=\sum_{i_{1} \leq i_{2} \leq \cdots \leq i_{r}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{r}}
$$

- E.g. for $n=3$,

$$
\begin{aligned}
& e_{1}=x_{1}+x_{2}+x_{3}=h_{1} \\
& e_{2}=x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3} h_{2}=x_{1}^{2}+x_{1} x_{2}+x_{1} x_{3}+x_{2}^{2}+x_{2} x_{3}+x_{3}^{2} \\
& e_{3}=x_{1} x_{2} x_{3} h_{3}=x_{1}^{3}+x_{1}^{2} x_{2}+x_{1}^{2} x_{3}+x_{1} x_{2}^{2}+\cdots
\end{aligned}
$$

- Let $\Lambda=\mathbb{Q}\left[e_{1}, e_{2}, \ldots\right]=\mathbb{Q}\left[h_{1}, h_{2}, \ldots\right]$. Call these "symmetric functions."
- Λ is a \mathbb{Q}-algebra.

Bases for symmetric functions

Dimension of degree d symmetric functions?

Bases for symmetric functions

Dimension of degree d symmetric functions? Number of partitions of d.

Bases for symmetric functions

Dimension of degree d symmetric functions? Number of partitions of d.

Definition

$n \in \mathbb{Z}_{>0}$, a partition of n is $\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{\ell}>0\right)$ such that $\lambda_{1}+\lambda_{2}+\cdots+\lambda_{\ell}=n$.

Bases for symmetric functions

Dimension of degree d symmetric functions? Number of partitions of d.

Definition

$n \in \mathbb{Z}_{>0}$, a partition of n is $\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{\ell}>0\right)$ such that $\lambda_{1}+\lambda_{2}+\cdots+\lambda_{\ell}=n$.

$$
\begin{aligned}
5 & \rightarrow \square \square \\
4+1 & \rightarrow \square \\
3+2 & \rightarrow \square \\
3+1+1 & \rightarrow 母
\end{aligned}
$$

$$
\begin{aligned}
2+2+1 & \rightarrow 母 \\
2+1+1+1 & \rightarrow \boxminus \\
1+1+1+1+1 & \rightarrow \boxminus
\end{aligned}
$$

Bases for symmetric functions

Dimension of degree d symmetric functions? Number of partitions of d.

Definition

$n \in \mathbb{Z}_{>0}$, a partition of n is $\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{\ell}>0\right)$ such that $\lambda_{1}+\lambda_{2}+\cdots+\lambda_{\ell}=n$.

$$
\begin{aligned}
5 & \rightarrow \square \square \\
4+1 & \rightarrow \square_{\square} \\
3+2 & \rightarrow \square \\
3+1+1 & \rightarrow \square_{\square}
\end{aligned}
$$

\Longrightarrow any basis of degree d symmetric functions can be indexed by partitions of d.

Semistandard Young Tableaux

Definition

Filling of partition diagram of λ with numbers such that

Semistandard Young Tableaux

Definition

Filling of partition diagram of λ with numbers such that
(1) strictly increasing up columns

Semistandard Young Tableaux

Definition

Filling of partition diagram of λ with numbers such that
(1) strictly increasing up columns
(2) weakly increasing along rows

Semistandard Young Tableaux

Definition

Filling of partition diagram of λ with numbers such that
(1) strictly increasing up columns
(2) weakly increasing along rows

Collection is called $\operatorname{SSYT}(\lambda)$.

Semistandard Young Tableaux

Definition

Filling of partition diagram of λ with numbers such that
(1) strictly increasing up columns
(2) weakly increasing along rows

Collection is called $\operatorname{SSYT}(\lambda)$.
For $\lambda=(2,1)$,

Polynomials from tableaux

Associate a polynomial to $\operatorname{SSYT}(\lambda)$.

Polynomials from tableaux

Associate a polynomial to $\operatorname{SSYT}(\lambda)$.

Polynomials from tableaux

Associate a polynomial to $\operatorname{SSYT}(\lambda)$.

$$
s_{(2,1)}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2} x_{2}+x_{1}^{2} x_{3}+x_{2}^{2} x_{3}+x_{1} x_{2}^{2}+x_{1} x_{3}^{2}+x_{2} x_{3}^{2}+2 x_{1} x_{2} x_{3}
$$

Polynomials from tableaux

Associate a polynomial to $\operatorname{SSYT}(\lambda)$.

$$
s_{(2,1)}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2} x_{2}+x_{1}^{2} x_{3}+x_{2}^{2} x_{3}+x_{1} x_{2}^{2}+x_{1} x_{3}^{2}+x_{2} x_{3}^{2}+2 x_{1} x_{2} x_{3}
$$

Definition

For λ a partition, set

$$
s_{\lambda}=\sum_{T \in \operatorname{SSYT}(\lambda)} \boldsymbol{x}^{T} \text { for } \boldsymbol{x}^{T}=\prod_{i \in T} x_{i}
$$

Polynomials from tableaux

Associate a polynomial to $\operatorname{SSYT}(\lambda)$.

$$
s_{(2,1)}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2} x_{2}+x_{1}^{2} x_{3}+x_{2}^{2} x_{3}+x_{1} x_{2}^{2}+x_{1} x_{3}^{2}+x_{2} x_{3}^{2}+2 x_{1} x_{2} x_{3}
$$

Definition

For λ a partition, set

$$
s_{\lambda}=\sum_{T \in \operatorname{SSYT}(\lambda)} \boldsymbol{x}^{T} \text { for } \boldsymbol{x}^{T}=\prod_{i \in T} x_{i}
$$

- s_{λ} is a symmetric function.

Polynomials from tableaux

Associate a polynomial to $\operatorname{SSYT}(\lambda)$.

$$
s_{(2,1)}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2} x_{2}+x_{1}^{2} x_{3}+x_{2}^{2} x_{3}+x_{1} x_{2}^{2}+x_{1} x_{3}^{2}+x_{2} x_{3}^{2}+2 x_{1} x_{2} x_{3}
$$

Definition

For λ a partition, set

$$
s_{\lambda}=\sum_{T \in \operatorname{SSYT}(\lambda)} \boldsymbol{x}^{T} \text { for } \boldsymbol{x}^{T}=\prod_{i \in T} x_{i}
$$

- s_{λ} is a symmetric function.
- $\left\{s_{\lambda}\right\}_{\lambda}$ forms a basis for Λ.

Symmetric functions and Schur functions

- Convention: $h_{0}=1$ and $h_{d}=0$ for $d<0$.
- For any $\gamma=\left(\gamma_{1}, \ldots, \gamma_{n}\right) \in \mathbb{Z}^{n}$, set

$$
s_{\gamma}=\operatorname{det}\left(h_{\gamma_{i}+j-i}\right)_{1 \leq i, j \leq n}
$$

Symmetric functions and Schur functions

- Convention: $h_{0}=1$ and $h_{d}=0$ for $d<0$.
- For any $\gamma=\left(\gamma_{1}, \ldots, \gamma_{n}\right) \in \mathbb{Z}^{n}$, set

$$
s_{\gamma}=\operatorname{det}\left(h_{\gamma_{i}+j-i}\right)_{1 \leq i, j \leq n}
$$

Then, $s_{\gamma}= \pm s_{\lambda}$ or 0 for some partition λ.

Symmetric functions and Schur functions

- Convention: $h_{0}=1$ and $h_{d}=0$ for $d<0$.
- For any $\gamma=\left(\gamma_{1}, \ldots, \gamma_{n}\right) \in \mathbb{Z}^{n}$, set

$$
s_{\gamma}=\operatorname{det}\left(h_{\gamma_{i}+j-i}\right)_{1 \leq i, j \leq n}
$$

Then, $s_{\gamma}= \pm s_{\lambda}$ or 0 for some partition λ.
Precisely, for $\rho=(n-1, n-2, \ldots, 1,0)$,

$$
s_{\gamma}= \begin{cases}\operatorname{sgn}(\gamma+\rho) s_{\mathrm{sort}}(\gamma+\rho)-\rho & \text { if } \gamma+\rho \text { has distinct nonnegative parts, } \\ 0 & \text { otherwise }\end{cases}
$$

- $\operatorname{sort}(\beta)=$ weakly decreasing sequence obtained by sorting β,
- $\operatorname{sgn}(\beta)=\operatorname{sign}$ of the shortest permutation taking β to $\operatorname{sort}(\beta)$.

Example: $s_{201}=0, s_{2-11}=-s_{200}$.

Representation theory and Schur functions

Frobenius charactersitc, Frob: $\operatorname{Rep}\left(S_{n}\right) \rightarrow \Lambda$.

Representation theory and Schur functions

Frobenius charactersitc, Frob: $\operatorname{Rep}\left(S_{n}\right) \rightarrow \Lambda$.

- Irreducible representations of S_{n} are labeled by partitions of n.

Representation theory and Schur functions

Frobenius charactersitc, Frob: $\operatorname{Rep}\left(S_{n}\right) \rightarrow \Lambda$.

- Irreducible representations of S_{n} are labeled by partitions of n.
- Irreducible S_{n}-representation V_{λ} has $\operatorname{Frob}\left(V_{\lambda}\right)=s_{\lambda}$

Representation theory and Schur functions

Frobenius charactersitc, Frob: $\operatorname{Rep}\left(S_{n}\right) \rightarrow \Lambda$.

- Irreducible representations of S_{n} are labeled by partitions of n.
- Irreducible S_{n}-representation V_{λ} has $\operatorname{Frob}\left(V_{\lambda}\right)=s_{\lambda}$
- $U \cong V \oplus W \Longrightarrow \operatorname{Frob}(U)=\operatorname{Frob}(V)+\operatorname{Frob}(W)$

Representation theory and Schur functions

Frobenius charactersitc, Frob: $\operatorname{Rep}\left(S_{n}\right) \rightarrow \Lambda$.

- Irreducible representations of S_{n} are labeled by partitions of n.
- Irreducible S_{n}-representation V_{λ} has $\operatorname{Frob}\left(V_{\lambda}\right)=s_{\lambda}$
- $U \cong V \oplus W \Longrightarrow \operatorname{Frob}(U)=\operatorname{Frob}(V)+\operatorname{Frob}(W)$
- $\operatorname{Ind}_{S_{m} \times S_{n}}^{S_{m+n}}(V \times W) \mapsto \operatorname{Frob}(V) \cdot \operatorname{Frob}(W)$

Representation theory and Schur functions

Frobenius charactersitc, Frob: $\operatorname{Rep}\left(S_{n}\right) \rightarrow \Lambda$.

- Irreducible representations of S_{n} are labeled by partitions of n.
- Irreducible S_{n}-representation V_{λ} has $\operatorname{Frob}\left(V_{\lambda}\right)=s_{\lambda}$
- $U \cong V \oplus W \Longrightarrow \operatorname{Frob}(U)=\operatorname{Frob}(V)+\operatorname{Frob}(W)$
- $\operatorname{Ind}_{S_{m} \times S_{n}}^{S_{m+n}}(V \times W) \mapsto \operatorname{Frob}(V) \cdot \operatorname{Frob}(W)$
- Upshot: S_{n}-representations go to symmetric functions in structure preserving way.

Representation theory and Schur functions

Frobenius charactersitc, Frob: $\operatorname{Rep}\left(S_{n}\right) \rightarrow \Lambda$.

- Irreducible representations of S_{n} are labeled by partitions of n.
- Irreducible S_{n}-representation V_{λ} has $\operatorname{Frob}\left(V_{\lambda}\right)=s_{\lambda}$
- $U \cong V \oplus W \Longrightarrow \operatorname{Frob}(U)=\operatorname{Frob}(V)+\operatorname{Frob}(W)$
- $\operatorname{Ind}_{S_{m} \times S_{n}}^{S_{m+n}}(V \times W) \mapsto \operatorname{Frob}(V) \cdot \operatorname{Frob}(W)$
- Upshot: S_{n}-representations go to symmetric functions in structure preserving way.

Hidden Guide: Schur Positivity

"Naturally occurring" symmetric functions which are non-negative (coefficients in \mathbb{N}) linear combinations in Schur polynomial basis are interesting since they could have representation-theoretic models.

An Example: Harmonic polynomials

Harmonic polynomials

$M=$ polynomials killed by all symmetric differential operators.

An Example: Harmonic polynomials

Harmonic polynomials

$M=$ polynomials killed by all symmetric differential operators.
Explicitly, for

$$
\Delta=\operatorname{det}\left|\begin{array}{lll}
x_{1}^{2} & x_{1} & 1 \\
x_{2}^{2} & x_{2} & 1 \\
x_{3}^{2} & x_{3} & 1
\end{array}\right|=x_{1}^{2}\left(x_{2}-x_{3}\right)-x_{2}^{2}\left(x_{1}-x_{3}\right)+x_{3}^{2}\left(x_{1}-x_{2}\right)
$$

An Example: Harmonic polynomials

Harmonic polynomials

$M=$ polynomials killed by all symmetric differential operators.
Explicitly, for

$$
\Delta=\operatorname{det}\left|\begin{array}{lll}
x_{1}^{2} & x_{1} & 1 \\
x_{2}^{2} & x_{2} & 1 \\
x_{3}^{2} & x_{3} & 1
\end{array}\right|=x_{1}^{2}\left(x_{2}-x_{3}\right)-x_{2}^{2}\left(x_{1}-x_{3}\right)+x_{3}^{2}\left(x_{1}-x_{2}\right)
$$

M is the vector space given by

An Example: Harmonic polynomials

Harmonic polynomials

$M=$ polynomials killed by all symmetric differential operators.
Explicitly, for

$$
\Delta=\operatorname{det}\left|\begin{array}{lll}
x_{1}^{2} & x_{1} & 1 \\
x_{2}^{2} & x_{2} & 1 \\
x_{3}^{2} & x_{3} & 1
\end{array}\right|=x_{1}^{2}\left(x_{2}-x_{3}\right)-x_{2}^{2}\left(x_{1}-x_{3}\right)+x_{3}^{2}\left(x_{1}-x_{2}\right)
$$

M is the vector space given by

$$
\begin{aligned}
M= & \operatorname{sp}\left\{\left(\partial_{x_{1}}^{a} \partial_{x_{2}}^{b} \partial_{x_{3}}^{c}\right) \Delta \mid a, b, c \geq 0\right\} \\
= & \operatorname{sp}\left\{\Delta, 2 x_{1}\left(x_{2}-x_{3}\right)-x_{2}^{2}+x_{3}^{2}, 2 x_{2}\left(x_{3}-x_{1}\right)-x_{3}^{2}+x_{1}^{2}\right. \\
& \left.x_{3}-x_{1}, x_{2}-x_{3}, 1\right\}
\end{aligned}
$$

Harmonic polynomials

$$
\operatorname{sp}\left\{\Delta, 2 x_{1}\left(x_{2}-x_{3}\right)-x_{2}^{2}+x_{3}^{2}, 2 x_{2}\left(x_{3}-x_{1}\right)-x_{3}^{2}+x_{1}^{2}, x_{3}-x_{1}, x_{2}-x_{3}, 1\right\}
$$

Harmonic polynomials

$\operatorname{sp}\left\{\Delta, 2 x_{1}\left(x_{2}-x_{3}\right)-x_{2}^{2}+x_{3}^{2}, 2 x_{2}\left(x_{3}-x_{1}\right)-x_{3}^{2}+x_{1}^{2}, x_{3}-x_{1}, x_{2}-x_{3}, 1\right\}$
(1) Break M up into irreducible S_{n}-representations (smallest S_{n} fixed subspaces).

Harmonic polynomials

$\operatorname{sp}\left\{\Delta, 2 x_{1}\left(x_{2}-x_{3}\right)-x_{2}^{2}+x_{3}^{2}, 2 x_{2}\left(x_{3}-x_{1}\right)-x_{3}^{2}+x_{1}^{2}, x_{3}-x_{1}, x_{2}-x_{3}, 1\right\}$
(1) Break M up into irreducible S_{n}-representations (smallest S_{n} fixed subspaces).

Harmonic polynomials

$\operatorname{sp}\left\{\Delta, 2 x_{1}\left(x_{2}-x_{3}\right)-x_{2}^{2}+x_{3}^{2}, 2 x_{2}\left(x_{3}-x_{1}\right)-x_{3}^{2}+x_{1}^{2}, x_{3}-x_{1}, x_{2}-x_{3}, 1\right\}$
(1) Break M up into irreducible S_{n}-representations (smallest S_{n} fixed subspaces).

(2) How many times does an irreducible S_{n}-representation occur?

Harmonic polynomials

$\operatorname{sp}\left\{\Delta, 2 x_{1}\left(x_{2}-x_{3}\right)-x_{2}^{2}+x_{3}^{2}, 2 x_{2}\left(x_{3}-x_{1}\right)-x_{3}^{2}+x_{1}^{2}, x_{3}-x_{1}, x_{2}-x_{3}, 1\right\}$
(1) Break M up into irreducible S_{n}-representations (smallest S_{n} fixed subspaces).

(2) How many times does an irreducible S_{n}-representation occur? Frobenius:

Harmonic polynomials

$\operatorname{sp}\left\{\Delta, 2 x_{1}\left(x_{2}-x_{3}\right)-x_{2}^{2}+x_{3}^{2}, 2 x_{2}\left(x_{3}-x_{1}\right)-x_{3}^{2}+x_{1}^{2}, x_{3}-x_{1}, x_{2}-x_{3}, 1\right\}$
(1) Break M up into irreducible S_{n}-representations (smallest S_{n} fixed subspaces).

(2) How many times does an irreducible S_{n}-representation occur?

Frobenius:

$$
e_{1}^{3}=\left(x_{1}+x_{2}+x_{3}\right)^{3}=s_{\square}+s_{\square}+s_{\square}+s \square \square
$$

Harmonic polynomials

$\operatorname{sp}\left\{\Delta, 2 x_{1}\left(x_{2}-x_{3}\right)-x_{2}^{2}+x_{3}^{2}, 2 x_{2}\left(x_{3}-x_{1}\right)-x_{3}^{2}+x_{1}^{2}, x_{3}-x_{1}, x_{2}-x_{3}, 1\right\}$
(1) Break M up into irreducible S_{n}-representations (smallest S_{n} fixed subspaces).

(2) How many times does an irreducible S_{n}-representation occur?

Frobenius:

$$
e_{1}^{3}=\left(x_{1}+x_{2}+x_{3}\right)^{3}=s_{\square}+s_{\square}+s_{\square}+s \square \square
$$

Remark: $M \cong \mathbb{C}\left[x_{1}, x_{2}, x_{3}\right] /\left(\mathbb{C}\left[x_{1}, x_{2}, x_{3}\right]_{+}^{S_{3}}\right)$.

Getting more information

Getting more information

Break M up into irreducible representations.

Getting more information

Break M up into irreducible representations.

Solution: irreducible S_{n}-representation of polynomials of degree $d \mapsto q^{d} s_{\lambda}$ (graded Frobenius)

$$
? ?=q^{3} s q^{2} s q^{2}+q s \square+s \square \square
$$

Getting more information

Break M up into irreducible representations.

Solution: irreducible S_{n}-representation of polynomials of degree $d \mapsto q^{d} s_{\lambda}$ (graded Frobenius)

$$
? ?=q^{3} s q^{2} s q_{\square}+q s \square+s \square \square
$$

Answer: Hall-Littlewood polynomial $H_{\square}(X ; q)$.

A Problem

- In 1988, Macdonald introduces a family of symmetric polynomials with coefficients in $\mathbb{Q}(q, t)$ generalizing Hall-Littlewood polynomials (and many other famous bases).

A Problem

- In 1988, Macdonald introduces a family of symmetric polynomials with coefficients in $\mathbb{Q}(q, t)$ generalizing Hall-Littlewood polynomials (and many other famous bases).
- Defined by orthogonality and triangularity under a certain inner-product. (Indirect)

A Problem

- In 1988, Macdonald introduces a family of symmetric polynomials with coefficients in $\mathbb{Q}(q, t)$ generalizing Hall-Littlewood polynomials (and many other famous bases).
- Defined by orthogonality and triangularity under a certain inner-product. (Indirect)
- Garsia modifies these polynomials so
$\tilde{H}_{\lambda}(X ; q, t)=\sum_{\mu} \tilde{K}_{\lambda \mu}(q, t) s_{\mu}$ conjecturally satisfies $\tilde{K}_{\lambda \mu}(q, t) \in \mathbb{N}[q, t]$

A Problem

- In 1988, Macdonald introduces a family of symmetric polynomials with coefficients in $\mathbb{Q}(q, t)$ generalizing Hall-Littlewood polynomials (and many other famous bases).
- Defined by orthogonality and triangularity under a certain inner-product. (Indirect)
- Garsia modifies these polynomials so
$\tilde{H}_{\lambda}(X ; q, t)=\sum_{\mu} \tilde{K}_{\lambda \mu}(q, t) s_{\mu}$ conjecturally satisfies $\tilde{K}_{\lambda \mu}(q, t) \in \mathbb{N}[q, t]$
- $\tilde{H}_{\lambda}(X ; 1,1)=e_{1}^{|\lambda|}$.

A Problem

- In 1988, Macdonald introduces a family of symmetric polynomials with coefficients in $\mathbb{Q}(q, t)$ generalizing Hall-Littlewood polynomials (and many other famous bases).
- Defined by orthogonality and triangularity under a certain inner-product. (Indirect)
- Garsia modifies these polynomials so
$\tilde{H}_{\lambda}(X ; q, t)=\sum_{\mu} \tilde{K}_{\lambda \mu}(q, t) s_{\mu}$ conjecturally satisfies $\tilde{K}_{\lambda \mu}(q, t) \in \mathbb{N}[q, t]$
- $\tilde{H}_{\lambda}(X ; 1,1)=e_{1}^{|\lambda|}$.
- Does there exist a family of S_{n}-regular representations whose bigraded Frobenius characteristics equal $\tilde{H}_{\lambda}(X ; q, t)$?

Garsia-Haiman modules

- $\mathbb{Q}\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right]$ with $\sigma\left(x_{i}\right)=x_{\sigma(i)}, \sigma\left(y_{j}\right)=y_{\sigma(j)}$.

Garsia-Haiman modules

- $\mathbb{Q}\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right]$ with $\sigma\left(x_{i}\right)=x_{\sigma(i)}, \sigma\left(y_{j}\right)=y_{\sigma(j)}$.
- Garsia-Haiman (1993): $M_{\mu}=$ span of partial derivatives of $\Delta_{\mu}=\operatorname{det}_{(i, j) \in \mu, k \in[n]}\left(x_{k}^{i-1} y_{k}^{j-1}\right)$

Garsia-Haiman modules

- $\mathbb{Q}\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right]$ with $\sigma\left(x_{i}\right)=x_{\sigma(i)}, \sigma\left(y_{j}\right)=y_{\sigma(j)}$.
- Garsia-Haiman (1993): $M_{\mu}=$ span of partial derivatives of $\Delta_{\mu}=\operatorname{det}_{(i, j) \in \mu, k \in[n]}\left(x_{k}^{i-1} y_{k}^{j-1}\right)$

$$
\Delta_{\square}=\operatorname{det}\left|\begin{array}{lll}
1 & y_{1} & x_{1} \\
1 & y_{2} & x_{2} \\
1 & y_{3} & x_{3}
\end{array}\right|=x_{3} y_{2}-y_{3} x_{2}-y_{1} x_{3}+y_{1} x_{2}+y_{3} x_{1}-y_{2} x_{1}
$$

Garsia-Haiman modules

- $\mathbb{Q}\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right]$ with $\sigma\left(x_{i}\right)=x_{\sigma(i)}, \sigma\left(y_{j}\right)=y_{\sigma(j)}$.
- Garsia-Haiman (1993): $M_{\mu}=$ span of partial derivatives of $\Delta_{\mu}=\operatorname{det}_{(i, j) \in \mu, k \in[n]}\left(x_{k}^{i-1} y_{k}^{j-1}\right)$

$$
\Delta_{\square}=\operatorname{det}\left|\begin{array}{lll}
1 & y_{1} & x_{1} \\
1 & y_{2} & x_{2} \\
1 & y_{3} & x_{3}
\end{array}\right|=x_{3} y_{2}-y_{3} x_{2}-y_{1} x_{3}+y_{1} x_{2}+y_{3} x_{1}-y_{2} x_{1}
$$

$$
M_{2,1}=\underbrace{\operatorname{sp}\left\{\Delta_{2,1}\right\}}_{\operatorname{deg}=(1,1)} \oplus \underbrace{\operatorname{sp}\left\{y_{3}-y_{1}, y_{1}-y_{2}\right\}}_{\operatorname{deg}=(0,1)} \oplus \underbrace{\operatorname{sp}\left\{x_{3}-x_{1}, x_{1}-x_{2}\right\}}_{\operatorname{deg}=(1,0)} \oplus \underbrace{\operatorname{sp}\{1\}}_{\operatorname{deg}=(0,0)}
$$

Garsia-Haiman modules

- $\mathbb{Q}\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right]$ with $\sigma\left(x_{i}\right)=x_{\sigma(i)}, \sigma\left(y_{j}\right)=y_{\sigma(j)}$.
- Garsia-Haiman (1993): $M_{\mu}=$ span of partial derivatives of $\Delta_{\mu}=\operatorname{det}_{(i, j) \in \mu, k \in[n]}\left(x_{k}^{i-1} y_{k}^{j-1}\right)$

$$
\Delta_{\square}=\operatorname{det}\left|\begin{array}{lll}
1 & y_{1} & x_{1} \\
1 & y_{2} & x_{2} \\
1 & y_{3} & x_{3}
\end{array}\right|=x_{3} y_{2}-y_{3} x_{2}-y_{1} x_{3}+y_{1} x_{2}+y_{3} x_{1}-y_{2} x_{1}
$$

$$
M_{2,1}=\underbrace{\operatorname{sp}\left\{\Delta_{2,1}\right\}}_{\operatorname{deg}=(1,1)} \oplus \underbrace{\operatorname{sp}\left\{y_{3}-y_{1}, y_{1}-y_{2}\right\}}_{\operatorname{deg}=(0,1)} \oplus \underbrace{\operatorname{sp}\left\{x_{3}-x_{1}, x_{1}-x_{2}\right\}}_{\operatorname{deg}=(1,0)} \oplus \underbrace{\operatorname{sp}\{1\}}_{\operatorname{deg}=(0,0)}
$$

Irreducible S_{n}-representation with bidegree $(a, b) \mapsto q^{a} t^{b} s_{\lambda}$

Garsia-Haiman modules

- $\mathbb{Q}\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right]$ with $\sigma\left(x_{i}\right)=x_{\sigma(i)}, \sigma\left(y_{j}\right)=y_{\sigma(j)}$.
- Garsia-Haiman (1993): $M_{\mu}=$ span of partial derivatives of $\Delta_{\mu}=\operatorname{det}_{(i, j) \in \mu, k \in[n]}\left(x_{k}^{i-1} y_{k}^{j-1}\right)$

$$
\Delta_{\square}=\operatorname{det}\left|\begin{array}{lll}
1 & y_{1} & x_{1} \\
1 & y_{2} & x_{2} \\
1 & y_{3} & x_{3}
\end{array}\right|=x_{3} y_{2}-y_{3} x_{2}-y_{1} x_{3}+y_{1} x_{2}+y_{3} x_{1}-y_{2} x_{1}
$$

$$
M_{2,1}=\underbrace{\operatorname{sp}\left\{\Delta_{2,1}\right\}}_{\operatorname{deg}=(1,1)} \oplus \underbrace{\operatorname{sp}\left\{y_{3}-y_{1}, y_{1}-y_{2}\right\}}_{\operatorname{deg}=(0,1)} \oplus \underbrace{\operatorname{sp}\left\{x_{3}-x_{1}, x_{1}-x_{2}\right\}}_{\operatorname{deg}=(1,0)} \oplus \underbrace{\operatorname{sp}\{1\}}_{\operatorname{deg}=(0,0)}
$$

Irreducible S_{n}-representation with bidegree $(a, b) \mapsto q^{a} t^{b} s_{\lambda}$

Garsia-Haiman modules

Theorem (Haiman, 2001)
The Garsia-Haiman module M_{λ} has bigraded Frobenius characteristic given by $\tilde{H}_{\lambda}(X ; q, t)$.

Garsia-Haiman modules

Theorem (Haiman, 2001)
The Garsia-Haiman module M_{λ} has bigraded Frobenius characteristic given by $\tilde{H}_{\lambda}(X ; q, t)$.

- Proved via connection to the Hilbert Scheme $\operatorname{Hilb}^{n}\left(\mathbb{C}^{2}\right)$.

Garsia-Haiman modules

Theorem (Haiman, 2001)

The Garsia-Haiman module M_{λ} has bigraded Frobenius characteristic given by $\tilde{H}_{\lambda}(X ; q, t)$.

- Proved via connection to the Hilbert Scheme $\operatorname{Hilb}^{n}\left(\mathbb{C}^{2}\right)$.

Corollary

$\tilde{H}_{\lambda}(X ; q, t)=\sum_{\mu} \tilde{K}_{\lambda \mu}(q, t) s_{\mu}$ satisfies $\tilde{K}_{\lambda \mu}(q, t) \in \mathbb{N}[q, t]$.

Garsia-Haiman modules

Theorem (Haiman, 2001)

The Garsia-Haiman module M_{λ} has bigraded Frobenius characteristic given by $\tilde{H}_{\lambda}(X ; q, t)$.

- Proved via connection to the Hilbert Scheme $\operatorname{Hilb}^{n}\left(\mathbb{C}^{2}\right)$.

$$
\begin{aligned}
& \text { Corollary } \\
& \tilde{H}_{\lambda}(X ; q, t)=\sum_{\mu} \tilde{K}_{\lambda \mu}(q, t) s_{\mu} \text { satisfies } \tilde{K}_{\lambda \mu}(q, t) \in \mathbb{N}[q, t] \text {. }
\end{aligned}
$$

- No combinatorial description of $\tilde{K}_{\lambda \mu}(q, t)$.

Outline

(1) Background on symmetric functions and Macdonald polynomials
(2) A new formula for Macdonald polynomials
(3) LLT polynomials in the elliptic Hall algebra

Root ideals

$R_{+}=\left\{\alpha_{i j} \mid 1 \leq i<j \leq n\right\}$ denotes the set of positive roots for $G L_{n}$, where $\alpha_{i j}=\epsilon_{i}-\epsilon_{j}$.

	12)(13)(14	14)(15
	${ }^{23)}(24$	24)(25
		4)(35

Root ideals

$R_{+}=\left\{\alpha_{i j} \mid 1 \leq i<j \leq n\right\}$ denotes the set of positive roots for $G L_{n}$, where $\alpha_{i j}=\epsilon_{i}-\epsilon_{j}$.

A root ideal $\Psi \subseteq R_{+}$is an upper order ideal of positive roots.

$$
\Psi=\text { Roots above Dyck path }
$$

Weyl symmetrization

Define the Weyl symmetrization operator $\sigma: \mathbb{Q}\left[z_{1}^{ \pm 1}, \ldots, z_{n}^{ \pm 1}\right] \rightarrow \Lambda(X)$ by linearly extending

$$
z^{\gamma} \mapsto s_{\gamma}(X)
$$

where $\boldsymbol{z}^{\gamma}=z_{1}^{\gamma_{1}} \cdots z_{n}^{\gamma_{n}}$.

Weyl symmetrization

Define the Weyl symmetrization operator $\sigma: \mathbb{Q}\left[z_{1}^{ \pm 1}, \ldots, z_{n}^{ \pm 1}\right] \rightarrow \Lambda(X)$ by linearly extending

$$
z^{\gamma} \mapsto s_{\gamma}(X)
$$

where $\boldsymbol{z}^{\gamma}=z_{1}^{\gamma_{1}} \cdots z_{n}^{\gamma_{n}}$.

Definition

A Catalan function is a symmetric function indexed by a root ideal $\Psi \subseteq R_{+}$and $\gamma \in \mathbb{Z}^{n}$

Weyl symmetrization

Define the Weyl symmetrization operator $\sigma: \mathbb{Q}\left[z_{1}^{ \pm 1}, \ldots, z_{n}^{ \pm 1}\right] \rightarrow \Lambda(X)$ by linearly extending

$$
z^{\gamma} \mapsto s_{\gamma}(X)
$$

where $\boldsymbol{z}^{\gamma}=z_{1}^{\gamma_{1}} \cdots z_{n}^{\gamma_{n}}$.

Definition

A Catalan function is a symmetric function indexed by a root ideal $\Psi \subseteq R_{+}$and $\gamma \in \mathbb{Z}^{n}$ given by

$$
H(\Phi ; \gamma)=\sigma\left(\frac{\boldsymbol{z}^{\gamma}}{\prod_{(i, j) \in \psi}\left(1-t z_{i} / z_{j}\right)}\right)
$$

Denominator factors are understood as geometric series $\left(1-t z_{i} / z_{j}\right)^{-1}=1+t z_{i} / z_{j}+t^{2}\left(z_{i} / z_{j}\right)^{2}+\cdots$

Catalan functions

Definition

A Catalan function is a symmetric function indexed by a root ideal $\Psi \subseteq R_{+}$and $\gamma \in \mathbb{Z}^{n}$ given by

$$
H(\Phi ; \gamma)=\boldsymbol{\sigma}\left(\frac{\mathbf{z}^{\gamma}}{\prod_{(i, j) \in \psi}\left(1-t z_{i} / z_{j}\right)}\right)
$$

Example:

$$
\psi=4 \gamma=(1,1,1)
$$

Catalan functions

Definition

A Catalan function is a symmetric function indexed by a root ideal $\psi \subseteq R_{+}$and $\gamma \in \mathbb{Z}^{n}$ given by

$$
H(\Phi ; \gamma)=\sigma\left(\frac{z^{\gamma}}{\prod_{(i, j) \in \psi}\left(1-t z_{i} / z_{j}\right)}\right)
$$

Example:

$$
\begin{aligned}
& \Psi= \\
& \begin{aligned}
H(\Psi ; \gamma) & =\sigma\left(\left(1+t \frac{z_{1}}{z_{2}}+t^{2} \frac{z_{1}^{2}}{z_{2}^{2}}+\cdots\right)\left(1+t \frac{z_{1}}{z_{3}}+t^{2} \frac{z_{1}^{2}}{z_{3}^{2}}+\cdots\right) z_{1} z_{2} z_{3}\right) \\
& =s_{111}+t\left(s_{201}+s_{210}\right)+t^{2}\left(s_{3-10}+s_{300}+s_{31-1}\right)+\cdots \\
& =s_{111}+t s_{210}
\end{aligned}
\end{aligned}
$$

A Catalan function for modified Hall-Littlewoods

$B_{\mu}=$ set of roots above block diagonal matrix with block sizes $\mu_{\ell(\mu)}, \ldots, \mu_{1}$

A Catalan function for modified Hall-Littlewoods

$B_{\mu}=$ set of roots above block diagonal matrix with block sizes $\mu_{\ell(\mu)}, \ldots, \mu_{1}$

Theorem (Weyman, Shimozono-Weyman)

$$
\tilde{H}_{\mu}(X ; 0, t)=\omega \sigma\left(\frac{z_{1} \cdots z_{n}}{\prod_{\alpha \in B_{\mu}}\left(1-t z^{\alpha}\right)}\right),
$$

where $z^{\alpha}=z_{i} / z_{j}$.
$\omega\left(s_{\lambda}\right)=s_{\lambda^{\prime}}$ for λ^{\prime} the transpose partition of λ.

Catalan functions for modified Hall-Littlewoods

b_{1}		
b_{2}	b_{3}	
b_{4}	b_{5}	b_{6}
b_{7}	b_{8}	b_{9}

$$
R_{\mu}:=\left\{\alpha_{i j} \in R_{+} \mid \operatorname{south}\left(b_{i}\right) \preceq b_{j}\right\} .
$$

row reading order $b_{1} \prec b_{2} \prec \cdots \prec b_{n}$

Catalan functions for modified Hall-Littlewoods

b_{1}		
b_{2}	b_{3}	
b_{4}	b_{5}	b_{6}
b_{7}	b_{8}	b_{9}

$$
R_{\mu}:=\left\{\alpha_{i j} \in R_{+} \mid \operatorname{south}\left(b_{i}\right) \preceq b_{j}\right\} .
$$

row reading order

$$
b_{1} \prec b_{2} \prec \cdots \prec b_{n}
$$

$$
\begin{aligned}
\tilde{H}_{\mu}(X ; 0, t) & =\omega \sigma\left(\frac{z_{1} \cdots z_{n}}{\prod_{\alpha \in B_{\mu}}\left(1-t z^{\alpha}\right)}\right) \\
& =\omega \sigma\left(\frac{z_{1} \cdots z_{n}}{\prod_{\alpha \in R_{\mu}}\left(1-t z^{\alpha}\right)}\right)
\end{aligned}
$$

A formula for $\tilde{H}_{\mu}(X ; q, t)$

$y n$	b_{1}
b_{2}	
b_{3}	b_{4}
b_{5}	b_{6}
b_{7}	b_{8}

row reading order $b_{1} \prec b_{2} \prec \cdots \prec b_{n}$

$$
\begin{aligned}
& R_{\mu}:=\left\{\alpha_{i j} \in R_{+} \mid \operatorname{south}\left(b_{i}\right) \preceq b_{j}\right\}, \\
& \widehat{R}_{\mu}:=\left\{\alpha_{i j} \in R_{+} \mid \operatorname{south}\left(b_{i}\right) \prec b_{j}\right\} .
\end{aligned}
$$

A formula for $\tilde{H}_{\mu}(X ; q, t)$

$y n$	b_{1}
b_{2}	
b_{3}	b_{4}
b_{5}	b_{6}
b_{7}	b_{8}

row reading order

$$
b_{1} \prec b_{2} \prec \cdots \prec b_{n}
$$

$$
\begin{aligned}
& R_{\mu}:=\left\{\alpha_{i j} \in R_{+} \mid \operatorname{south}\left(b_{i}\right) \preceq b_{j}\right\}, \\
& \widehat{R}_{\mu}:=\left\{\alpha_{i j} \in R_{+} \mid \operatorname{south}\left(b_{i}\right) \prec b_{j}\right\} .
\end{aligned}
$$

Theorem (Blasiak-Haiman-Morse-Pun-S.)

The modified Macdonald polynomial $\tilde{H}_{\mu}=\tilde{H}_{\mu}(X ; q, t)$ is given by

$$
\tilde{H}_{\mu}=\omega \boldsymbol{\sigma}\left(z_{1} \cdots z_{n} \frac{\prod_{i j} \frac{R_{\mu} \backslash \widehat{R}_{\mu}}{}\left(1-q^{\operatorname{arm}\left(b_{i}\right)+1} t^{-\operatorname{leg}\left(b_{i}\right)} z_{i} / z_{j}\right) \prod_{\alpha \in \widehat{R}_{\mu}}\left(1-q t z^{\alpha}\right)}{\prod_{\alpha \in R_{+}}\left(1-q z^{\alpha}\right) \prod_{\alpha \in R_{\mu}}\left(1-t z^{\alpha}\right)}\right) .
$$

Example

Example

$1-q \frac{z_{1}}{z_{2}}$	
$1-q t^{-1} \frac{z_{2}}{z_{3}}$	
$1-q^{2} t^{-2} \frac{z_{3}}{z_{5}}$	$1-q \frac{z_{4}}{z_{6}}$
$1-q^{2} t^{-3} \frac{z_{5}}{z_{7}}$	$1-q t^{-1} \frac{z_{6}}{z_{8}}$

1
\tilde{H}_{22211}
numerator factors $1-q^{\mathrm{arm}+1} t^{-\operatorname{leg}} z_{i} / z_{j}$

$q=t=1$ specialization

$$
\begin{aligned}
& \omega \sigma\left(z_{1}^{\cdots z_{n}} \frac{\prod_{\alpha_{j} \in R_{\mu} \backslash \hat{R}_{\mu}}\left(1-q^{a \operatorname{arm}\left(b_{i}\right)+1} t^{-\operatorname{leg}\left(b_{i}\right)} z_{i} / z_{j}\right)}{\prod_{\alpha \in \mathcal{R}_{\mu}}\left(1-q t z^{\alpha}\right)}{ }_{\alpha \in R_{+}}\left(1-q z^{\alpha}\right) \prod_{\alpha \in \mathcal{R}_{\mu}}\left(1-t z^{\alpha}\right) \quad\right) \\
& \xrightarrow{q=t=1} \omega \sigma\left(z_{1} \cdots z_{n} \frac{\prod_{\alpha \in R_{\mu} \backslash \hat{R}_{\mu}}\left(1-z^{\alpha}\right) \prod_{\alpha \in \hat{R}_{R}}\left(1-z^{\alpha}\right)}{\prod_{\alpha \in R_{+}}\left(1-z^{\alpha}\right) \prod_{\alpha \in R_{\mu}}\left(1-z^{\alpha}\right)}\right) \\
& =\omega \sigma\left(\frac{z_{1} \cdots z_{n}}{\prod_{a \in R_{+}}\left(1-z^{\alpha}\right)}\right) \\
& =\omega h_{1}^{n} \\
& =e_{1}^{n}
\end{aligned}
$$

$q=0$ specialization

$$
\left.\begin{array}{l}
\quad \prod \quad \omega \boldsymbol{\sigma}\left(z_{1} \cdots z_{n} \frac{\alpha_{i j} \in R_{\mu} \backslash \widehat{R}_{\mu}}{}\left(1-q^{\operatorname{arm}\left(b_{i}\right)+1} t^{-\operatorname{leg}\left(b_{i}\right)} z_{i} / z_{j}\right) \prod_{\alpha \in \widehat{R}_{\mu}}\left(1-q t z^{\alpha}\right)\right. \\
\prod_{\alpha \in R_{+}}\left(1-q z^{\alpha}\right) \prod_{\alpha \in R_{\mu}}\left(1-t \boldsymbol{z}^{\alpha}\right)
\end{array}\right)
$$

Proof of formula for \tilde{H}_{μ}

Definition

∇ is the linear operator on symmetric functions satisfying $\nabla \tilde{H}_{\mu}=t^{n(\mu)} q^{n\left(\mu^{*}\right)} \tilde{H}_{\mu}$, where $n(\mu)=\sum_{i}(i-1) \mu_{i}$.

Proof of formula for \tilde{H}_{μ}

Definition

∇ is the linear operator on symmetric functions satisfying $\nabla \tilde{H}_{\mu}=t^{n(\mu)} q^{n\left(\mu^{*}\right)} \tilde{H}_{\mu}$, where $n(\mu)=\sum_{i}(i-1) \mu_{i}$.

- Start with the Haglund-Haiman-Loehr formula for \tilde{H}_{μ} as a sum of LLT polynomials $\mathcal{G}_{\nu}(X ; q)$.

Proof of formula for \tilde{H}_{μ}

Definition

∇ is the linear operator on symmetric functions satisfying $\nabla \tilde{H}_{\mu}=t^{n(\mu)} q^{n\left(\mu^{*}\right)} \tilde{H}_{\mu}$, where $n(\mu)=\sum_{i}(i-1) \mu_{i}$.

- Start with the Haglund-Haiman-Loehr formula for \tilde{H}_{μ} as a sum of LLT polynomials $\mathcal{G}_{\nu}(X ; q)$.
- Apply $\omega \nabla$ to both sides.

Proof of formula for \tilde{H}_{μ}

Definition

∇ is the linear operator on symmetric functions satisfying $\nabla \tilde{H}_{\mu}=t^{n(\mu)} q^{n\left(\mu^{*}\right)} \tilde{H}_{\mu}$, where $n(\mu)=\sum_{i}(i-1) \mu_{i}$.

- Start with the Haglund-Haiman-Loehr formula for \tilde{H}_{μ} as a sum of LLT polynomials $\mathcal{G}_{\nu}(X ; q)$.
- Apply $\omega \nabla$ to both sides.
- Use Catalan-like ("Catalanimal") formula for $\omega \nabla \mathcal{G}_{\nu}(X ; q)$ and collect terms.

LLT Polynomials

Let $\boldsymbol{\nu}=\left(\nu_{(1)}, \ldots, \nu_{(k)}\right)$ be a tuple of skew shapes.

$$
\nu=(\square, \square \square)
$$

LLT Polynomials

Let $\boldsymbol{\nu}=\left(\nu_{(1)}, \ldots, \nu_{(k)}\right)$ be a tuple of skew shapes.

- The content of a box in row y, column x is $x-y$.

$$
\nu=(\square, \square \square)
$$

-4	-3	-2	-1	0	1
-3	-2	-1	0	1	2
-2	-1	0	1	2	3
-1	0	1	2	3	4
0	1	2	3	4	5

LLT Polynomials

Let $\boldsymbol{\nu}=\left(\nu_{(1)}, \ldots, \nu_{(k)}\right)$ be a tuple of skew shapes.

- The content of a box in row y, column x is $x-y$.
- Reading order: label boxes b_{1}, \ldots, b_{n} by scanning each diagonal from southwest to northeast, in order of increasing content.

$$
\nu=\left(\begin{array}{l}
\square \\
\square
\end{array} \square\right)
$$

				b_{3}	b_{6}
				b_{5}	b_{8}
b_{1}	b_{2}				
	b_{4}	b_{7}			

LLT Polynomials

Let $\boldsymbol{\nu}=\left(\nu_{(1)}, \ldots, \nu_{(k)}\right)$ be a tuple of skew shapes.

- The content of a box in row y, column x is $x-y$.
- Reading order: label boxes b_{1}, \ldots, b_{n} by scanning each diagonal from southwest to northeast, in order of increasing content.
- A pair $(a, b) \in \boldsymbol{\nu}$ is attacking if a precedes b in reading order and
- content $(b)=\operatorname{content}(a)$, or
- $\operatorname{content}(b)=\operatorname{content}(a)+1$ and $a \in \nu_{(i)}, b \in \nu_{(j)}$ with $i>j$.

$$
\nu=\binom{\square, \square}{\square}
$$

			b_{3} b_{6} b_{5} b_{8} 		
b_{1}	b_{2}				
	b_{4}	b_{7}			

Attacking pairs: $\left(b_{2}, b_{3}\right),\left(b_{3}, b_{4}\right),\left(b_{4}, b_{5}\right),\left(b_{4}, b_{6}\right),\left(b_{5}, b_{7}\right),\left(b_{6}, b_{7}\right),\left(b_{7}, b_{8}\right)$

LLT Polynomials

Let $\boldsymbol{\nu}=\left(\nu_{(1)}, \ldots, \nu_{(k)}\right)$ be a tuple of skew shapes.

- The content of a box in row y, column x is $x-y$.
- Reading order: label boxes b_{1}, \ldots, b_{n} by scanning each diagonal from southwest to northeast, in order of increasing content.
- A pair $(a, b) \in \boldsymbol{\nu}$ is attacking if a precedes b in reading order and
- content $(b)=\operatorname{content}(a)$, or
- $\operatorname{content}(b)=\operatorname{content}(a)+1$ and $a \in \nu_{(i)}, b \in \nu_{(j)}$ with $i>j$.

$$
\nu=\binom{\square, \square}{\square}
$$

			b_{3} b_{6} b_{5} b_{8} b_{1} b_{2} b_{4}	

Attacking pairs: $\left(b_{2}, b_{3}\right),\left(b_{3}, b_{4}\right),\left(b_{4}, b_{5}\right),\left(b_{4}, b_{6}\right),\left(b_{5}, b_{7}\right),\left(b_{6}, b_{7}\right),\left(b_{7}, b_{8}\right)$

LLT Polynomials

Let $\boldsymbol{\nu}=\left(\nu_{(1)}, \ldots, \nu_{(k)}\right)$ be a tuple of skew shapes.

- The content of a box in row y, column x is $x-y$.
- Reading order: label boxes b_{1}, \ldots, b_{n} by scanning each diagonal from southwest to northeast, in order of increasing content.
- A pair $(a, b) \in \boldsymbol{\nu}$ is attacking if a precedes b in reading order and
- content $(b)=\operatorname{content}(a)$, or
- $\operatorname{content}(b)=\operatorname{content}(a)+1$ and $a \in \nu_{(i)}, b \in \nu_{(j)}$ with $i>j$.

$$
\nu=\binom{\square, \square}{\square}
$$

			b_{3} b_{6} b_{5} b_{8} b_{1} b_{2} b_{4} 		

Attacking pairs: $\left(b_{2}, b_{3}\right),\left(b_{3}, b_{4}\right),\left(b_{4}, b_{5}\right),\left(b_{4}, b_{6}\right),\left(b_{5}, b_{7}\right),\left(b_{6}, b_{7}\right),\left(b_{7}, b_{8}\right)$

LLT Polynomials

Let $\boldsymbol{\nu}=\left(\nu_{(1)}, \ldots, \nu_{(k)}\right)$ be a tuple of skew shapes.

- The content of a box in row y, column x is $x-y$.
- Reading order: label boxes b_{1}, \ldots, b_{n} by scanning each diagonal from southwest to northeast, in order of increasing content.
- A pair $(a, b) \in \boldsymbol{\nu}$ is attacking if a precedes b in reading order and
- content $(b)=\operatorname{content}(a)$, or
- $\operatorname{content}(b)=\operatorname{content}(a)+1$ and $a \in \nu_{(i)}, b \in \nu_{(j)}$ with $i>j$.

$$
\nu=\binom{\square, \square}{\square}
$$

			b_{3} b_{6} b_{5} b_{8} b_{1} b_{2} b_{4} 	

Attacking pairs: $\left(b_{2}, b_{3}\right),\left(b_{3}, b_{4}\right),\left(b_{4}, b_{5}\right),\left(b_{4}, b_{6}\right),\left(b_{5}, b_{7}\right),\left(b_{6}, b_{7}\right),\left(b_{7}, b_{8}\right)$

LLT Polynomials

Let $\boldsymbol{\nu}=\left(\nu_{(1)}, \ldots, \nu_{(k)}\right)$ be a tuple of skew shapes.

- The content of a box in row y, column x is $x-y$.
- Reading order: label boxes b_{1}, \ldots, b_{n} by scanning each diagonal from southwest to northeast, in order of increasing content.
- A pair $(a, b) \in \boldsymbol{\nu}$ is attacking if a precedes b in reading order and
- content $(b)=\operatorname{content}(a)$, or
- $\operatorname{content}(b)=\operatorname{content}(a)+1$ and $a \in \nu_{(i)}, b \in \nu_{(j)}$ with $i>j$.

$$
\nu=\left(\begin{array}{l}
\square \\
\square
\end{array} \square\right)
$$

Attacking pairs: $\left(b_{2}, b_{3}\right),\left(b_{3}, b_{4}\right),\left(b_{4}, b_{5}\right),\left(b_{4}, b_{6}\right),\left(b_{5}, b_{7}\right),\left(b_{6}, b_{7}\right),\left(b_{7}, b_{8}\right)$

LLT Polynomials

Let $\boldsymbol{\nu}=\left(\nu_{(1)}, \ldots, \nu_{(k)}\right)$ be a tuple of skew shapes.

- The content of a box in row y, column x is $x-y$.
- Reading order: label boxes b_{1}, \ldots, b_{n} by scanning each diagonal from southwest to northeast, in order of increasing content.
- A pair $(a, b) \in \boldsymbol{\nu}$ is attacking if a precedes b in reading order and
- content $(b)=\operatorname{content}(a)$, or
- $\operatorname{content}(b)=\operatorname{content}(a)+1$ and $a \in \nu_{(i)}, b \in \nu_{(j)}$ with $i>j$.

$$
\nu=\binom{\square, \square}{\square}
$$

			b_{3} b_{6} b_{5} b_{8} b_{1} b_{2} b_{4}		
7					

Attacking pairs: $\left(b_{2}, b_{3}\right),\left(b_{3}, b_{4}\right),\left(b_{4}, b_{5}\right),\left(b_{4}, b_{6}\right),\left(b_{5}, b_{7}\right),\left(b_{6}, b_{7}\right),\left(b_{7}, b_{8}\right)$

LLT Polynomials

Let $\boldsymbol{\nu}=\left(\nu_{(1)}, \ldots, \nu_{(k)}\right)$ be a tuple of skew shapes.

- The content of a box in row y, column x is $x-y$.
- Reading order: label boxes b_{1}, \ldots, b_{n} by scanning each diagonal from southwest to northeast, in order of increasing content.
- A pair $(a, b) \in \boldsymbol{\nu}$ is attacking if a precedes b in reading order and
- content $(b)=\operatorname{content}(a)$, or
- $\operatorname{content}(b)=\operatorname{content}(a)+1$ and $a \in \nu_{(i)}, b \in \nu_{(j)}$ with $i>j$.

$$
\nu=\binom{\square, \square}{\square}
$$

			b_{3} b_{6} b_{5} b_{8} b_{1} b_{2} b_{4} 		

Attacking pairs: $\left(b_{2}, b_{3}\right),\left(b_{3}, b_{4}\right),\left(b_{4}, b_{5}\right),\left(b_{4}, b_{6}\right),\left(b_{5}, b_{7}\right),\left(b_{6}, b_{7}\right),\left(b_{7}, b_{8}\right)$

LLT Polynomials

Let $\boldsymbol{\nu}=\left(\nu_{(1)}, \ldots, \nu_{(k)}\right)$ be a tuple of skew shapes.

- The content of a box in row y, column x is $x-y$.
- Reading order: label boxes b_{1}, \ldots, b_{n} by scanning each diagonal from southwest to northeast, in order of increasing content.
- A pair $(a, b) \in \boldsymbol{\nu}$ is attacking if a precedes b in reading order and
- content $(b)=\operatorname{content}(a)$, or
- $\operatorname{content}(b)=\operatorname{content}(a)+1$ and $a \in \nu_{(i)}, b \in \nu_{(j)}$ with $i>j$.

$$
\nu=\binom{\square, \square}{\square}
$$

			b_{3} b_{6} b_{5} b_{8} b_{1} b_{2} b_{4} 	

Attacking pairs: $\left(b_{2}, b_{3}\right),\left(b_{3}, b_{4}\right),\left(b_{4}, b_{5}\right),\left(b_{4}, b_{6}\right),\left(b_{5}, b_{7}\right),\left(b_{6}, b_{7}\right),\left(b_{7}, b_{8}\right)$

LLT Polynomials

- A semistandard tableau on $\boldsymbol{\nu}$ is a map $T: \nu \rightarrow \mathbb{Z}_{+}$which restricts to a semistandard tableau on each $\nu_{(i)}$.
- An attacking inversion in T is an attacking pair (a, b) such that $T(a)>T(b)$.
The LLT polynomial indexed by a tuple of skew shapes ν is

$$
\mathcal{G}_{\nu}(\boldsymbol{x} ; q)=\sum_{T \in \operatorname{SSYT}(\nu)} q^{\operatorname{inv}(T) \boldsymbol{x}^{T},}
$$

where $\operatorname{inv}(T)$ is the number of attacking inversions in T and $\boldsymbol{x}^{T}=\prod_{a \in \nu} x_{T(a)}$.

LLT Polynomials

- A semistandard tableau on $\boldsymbol{\nu}$ is a map $T: \nu \rightarrow \mathbb{Z}_{+}$which restricts to a semistandard tableau on each $\nu_{(i)}$.
- An attacking inversion in T is an attacking pair (a, b) such that $T(a)>T(b)$.
The LLT polynomial indexed by a tuple of skew shapes ν is

$$
\mathcal{G}_{\nu}(\boldsymbol{x} ; q)=\sum_{T \in \operatorname{SSYT}(\nu)} q^{\operatorname{inv}(T) \boldsymbol{x}^{T},}
$$

where $\operatorname{inv}(T)$ is the number of attacking inversions in T and $\boldsymbol{x}^{T}=\prod_{a \in \nu} x_{T(a)}$.

LLT Polynomials

- A semistandard tableau on $\boldsymbol{\nu}$ is a map $T: \nu \rightarrow \mathbb{Z}_{+}$which restricts to a semistandard tableau on each $\nu_{(i)}$.
- An attacking inversion in T is an attacking pair (a, b) such that $T(a)>T(b)$.
The LLT polynomial indexed by a tuple of skew shapes ν is

$$
\mathcal{G}_{\nu}(\boldsymbol{x} ; q)=\sum_{T \in \operatorname{SSYT}(\nu)} q^{\operatorname{inv}(T) \boldsymbol{x}^{T},}
$$

where $\operatorname{inv}(T)$ is the number of attacking inversions in T and $\boldsymbol{x}^{T}=\prod_{a \in \nu} x_{T(a)}$.

LLT Polynomials

- A semistandard tableau on $\boldsymbol{\nu}$ is a map $T: \nu \rightarrow \mathbb{Z}_{+}$which restricts to a semistandard tableau on each $\nu_{(i)}$.
- An attacking inversion in T is an attacking pair (a, b) such that $T(a)>T(b)$.
The LLT polynomial indexed by a tuple of skew shapes ν is

$$
\mathcal{G}_{\nu}(\boldsymbol{x} ; q)=\sum_{T \in \operatorname{SSYT}(\nu)} q^{\operatorname{inv}(T) \boldsymbol{x}^{T},}
$$

where $\operatorname{inv}(T)$ is the number of attacking inversions in T and $\boldsymbol{x}^{T}=\prod_{a \in \nu} x_{T(a)}$.

LLT Polynomials

- A semistandard tableau on $\boldsymbol{\nu}$ is a map $T: \nu \rightarrow \mathbb{Z}_{+}$which restricts to a semistandard tableau on each $\nu_{(i)}$.
- An attacking inversion in T is an attacking pair (a, b) such that $T(a)>T(b)$.
The LLT polynomial indexed by a tuple of skew shapes ν is

$$
\mathcal{G}_{\nu}(\boldsymbol{x} ; q)=\sum_{T \in \operatorname{SSYT}(\nu)} q^{\operatorname{inv}(T) \boldsymbol{x}^{T},}
$$

where $\operatorname{inv}(T)$ is the number of attacking inversions in T and $\boldsymbol{x}^{T}=\prod_{a \in \nu} x_{T(a)}$.

LLT Polynomials

- A semistandard tableau on $\boldsymbol{\nu}$ is a map $T: \nu \rightarrow \mathbb{Z}_{+}$which restricts to a semistandard tableau on each $\nu_{(i)}$.
- An attacking inversion in T is an attacking pair (a, b) such that $T(a)>T(b)$.
The LLT polynomial indexed by a tuple of skew shapes ν is

$$
\mathcal{G}_{\nu}(\boldsymbol{x} ; q)=\sum_{T \in \operatorname{SSYT}(\nu)} q^{\operatorname{inv}(T) \boldsymbol{x}^{T},}
$$

where $\operatorname{inv}(T)$ is the number of attacking inversions in T and $\boldsymbol{x}^{T}=\prod_{a \in \nu} x_{T(a)}$.

LLT Polynomials

- A semistandard tableau on $\boldsymbol{\nu}$ is a map $T: \nu \rightarrow \mathbb{Z}_{+}$which restricts to a semistandard tableau on each $\nu_{(i)}$.
- An attacking inversion in T is an attacking pair (a, b) such that $T(a)>T(b)$.
The LLT polynomial indexed by a tuple of skew shapes ν is

$$
\mathcal{G}_{\nu}(\boldsymbol{x} ; q)=\sum_{T \in \operatorname{SSYT}(\nu)} q^{\operatorname{inv}(T) \boldsymbol{x}^{T},}
$$

where $\operatorname{inv}(T)$ is the number of attacking inversions in T and $\boldsymbol{x}^{T}=\prod_{a \in \nu} x_{T(a)}$.

LLT Polynomials

- A semistandard tableau on $\boldsymbol{\nu}$ is a map $T: \nu \rightarrow \mathbb{Z}_{+}$which restricts to a semistandard tableau on each $\nu_{(i)}$.
- An attacking inversion in T is an attacking pair (a, b) such that $T(a)>T(b)$.
The LLT polynomial indexed by a tuple of skew shapes ν is

$$
\mathcal{G}_{\nu}(\boldsymbol{x} ; q)=\sum_{T \in \operatorname{SSYT}(\nu)} q^{\operatorname{inv}(T) \boldsymbol{x}^{T},}
$$

where $\operatorname{inv}(T)$ is the number of attacking inversions in T and $\boldsymbol{x}^{T}=\prod_{a \in \nu} x_{T(a)}$.

Catalanimals

Definition
The Catalanimal indexed by $R_{q}, R_{t}, R_{q t} \subseteq R_{+}$and $\lambda \in \mathbb{Z}^{n}$ is

Catalanimals

Definition

The Catalanimal indexed by $R_{q}, R_{t}, R_{q t} \subseteq R_{+}$and $\lambda \in \mathbb{Z}^{n}$ is

$$
H\left(R_{q}, R_{t}, R_{q t}, \lambda\right)=\sigma\left(\frac{z^{\lambda} \prod_{\alpha \in R_{q t}}\left(1-q t z^{\alpha}\right)}{\prod_{\alpha \in R_{q}}\left(1-q z^{\alpha}\right) \prod_{\alpha \in R_{t}}\left(1-t z^{\alpha}\right)}\right) .
$$

Catalanimals

Definition

The Catalanimal indexed by $R_{q}, R_{t}, R_{q t} \subseteq R_{+}$and $\lambda \in \mathbb{Z}^{n}$ is

$$
H\left(R_{q}, R_{t}, R_{q t}, \lambda\right)=\sigma\left(\frac{z^{\lambda} \prod_{\alpha \in R_{q t}}\left(1-q t z^{\alpha}\right)}{\prod_{\alpha \in R_{q}}\left(1-q z^{\alpha}\right) \prod_{\alpha \in R_{t}}\left(1-t z^{\alpha}\right)}\right) .
$$

With $n=3$,

$$
\begin{aligned}
& H\left(R_{+}, R_{+},\left\{\alpha_{13}\right\},(111)\right)=\sigma\left(\frac{z^{111}\left(1-q t z_{1} / z_{3}\right)}{\prod_{1 \leq i<j \leq 3}\left(1-q z_{i} / z_{j}\right)\left(1-t z_{i} / z_{j}\right)}\right) \\
& =s_{111}+\left(q+t+q^{2}+q t+t^{2}\right) s_{21}+\left(q t+q^{3}+q^{2} t+q t^{2}+t^{3}\right) s_{3} \\
& =\omega \nabla e_{3} .
\end{aligned}
$$

LLT Catalanimals

For a tuple of skew shapes $\boldsymbol{\nu}$, the LLT Catalanimal $H_{\nu}=H\left(R_{q}, R_{t}, R_{q t}, \lambda\right)$ is determined by

- $R_{+} \supseteq R_{q} \supseteq R_{t} \supseteq R_{q t}$,

LLT Catalanimals

For a tuple of skew shapes $\boldsymbol{\nu}$, the LLT Catalanimal $H_{\nu}=H\left(R_{q}, R_{t}, R_{q t}, \lambda\right)$ is determined by

- $R_{+} \supseteq R_{q} \supseteq R_{t} \supseteq R_{q t}$,
- $R_{+} \backslash R_{q}=$ pairs of boxes in the same diagonal,
- $R_{q} \backslash R_{t}=$ the attacking pairs,
- $R_{t} \backslash R_{q t}=$ pairs going between adjacent diagonals,

LLT Catalanimals

For a tuple of skew shapes $\boldsymbol{\nu}$, the LLT Catalanimal $H_{\nu}=H\left(R_{q}, R_{t}, R_{q t}, \lambda\right)$ is determined by

- $R_{+} \supseteq R_{q} \supseteq R_{t} \supseteq R_{q t}$,
- $R_{+} \backslash R_{q}=$ pairs of boxes in the same diagonal,
- $R_{q} \backslash R_{t}=$ the attacking pairs,
- $R_{t} \backslash R_{q t}=$ pairs going between adjacent diagonals,
- λ : fill each diagonal D of ν with $1+\chi(D$ contains a row start $)-\chi(D$ contains a row end $)$. Listing this filling in reading order gives λ.

LLT Catalanimals

$\square R_{+} \backslash R_{q}=$ pairs of boxes in the same diagonal, $R_{q} \backslash R_{t}=$ the attacking pairs,

- $R_{t} \backslash R_{q t}=$ pairs going between adjacent diagonals, $R_{q t}=$ all other pairs,
λ : fill each diagonal D of ν with
$1+\chi(D$ contains a row start $)-\chi(D$ contains a row end $)$.

ν

LLT Catalanimals

$\square R_{+} \backslash R_{q}=$ pairs of boxes in the same diagonal, $R_{q} \backslash R_{t}=$ the attacking pairs,

- $R_{t} \backslash R_{q t}=$ pairs going between adjacent diagonals, $R_{q t}=$ all other pairs,
λ : fill each diagonal D of ν with
$1+\chi(D$ contains a row start $)-\chi(D$ contains a row end $)$.

λ, as a filling of ν

LLT Catalanimals

Theorem (Blasiak-Haiman-Morse-Pun-S.)

Let $\boldsymbol{\nu}$ be a tuple of skew shapes and let $H_{\nu}=H\left(R_{q}, R_{t}, R_{q t}, \lambda\right)$ be the associated LLT Catalanimal. Then

$$
\begin{aligned}
\nabla \mathcal{G}_{\nu}(X ; q) & =c_{\nu} \omega H_{\nu} \\
& =c_{\nu} \omega \sigma\left(\frac{z^{\lambda} \prod_{\alpha \in R_{q t}}\left(1-q t \boldsymbol{z}^{\alpha}\right)}{\prod_{\alpha \in R_{q}}\left(1-q z^{\alpha}\right) \prod_{\alpha \in R_{t}}\left(1-t \boldsymbol{z}^{\alpha}\right)}\right)
\end{aligned}
$$

for some $c_{\nu} \in \pm q^{\mathbb{Z}} t^{\mathbb{Z}}$.

Haglund-Haiman-Loehr formula

Theorem (Haglund-Haiman-Loehr, 2005)

$$
\tilde{H}_{\mu}(X ; q, t)=\sum_{D}\left(\prod_{u \in D} q^{-\operatorname{arm}(u)} t^{\operatorname{leg}(u)+1}\right) \mathcal{G}_{\boldsymbol{\nu}(\mu, D)}(X ; q)
$$

where

- the sum runs over all subsets $D \subseteq\{(i, j) \in \mu \mid j>1\}$, and
- $\boldsymbol{\nu}(\mu, D)=\left(\nu^{(1)}, \ldots, \nu^{(k)}\right)$ where $k=\mu_{1}$ is the number of columns of μ, and $\nu^{(i)}$ is a ribbon of size μ_{i}^{*}, i.e., box contents
$\left\{-1,-2, \ldots,-\mu_{i}^{*}\right\}$, and descent set $\operatorname{Des}\left(\nu^{(i)}\right)=\{-j \mid(i, j) \in D\}$.

Haglund-Haiman-Loehr formula example

$$
\tilde{H}_{\mu}(X ; q, t)=\sum_{D}\left(\prod_{u \in D} q^{-\operatorname{arm}(\omega)} t^{\operatorname{leg}(\omega)+1}\right) \mathcal{G}_{\nu(\mu, D)}(X ; q)
$$

b_{1}	
b_{2}	b_{3}
b_{4}	b_{5}
μ	

$$
\begin{aligned}
& \begin{array}{l:l}
\frac{1}{2} \\
\frac{3}{4} & q^{-1} t^{4}
\end{array} \\
& \begin{array}{c}
\frac{3}{4} \\
\frac{1}{4} \\
q^{-1} t^{3}
\end{array} \\
& D=\left\{b_{2}, b_{3}\right\} \\
& D=\left\{b_{1}, b_{2}\right\} \\
& D=\left\{b_{1}, b_{3}\right\} \\
& 35 \\
& \frac{12^{2}}{4} q^{\prime} q^{-1} t^{2}
\end{aligned}
$$

Putting it all together

- Take HHL formula $\tilde{H}_{\mu}=\sum_{D} a_{\mu, D} \mathcal{G}_{\boldsymbol{\nu}(\mu, D)}$ and apply $\omega \nabla$.

Putting it all together

- Take HHL formula $\tilde{H}_{\mu}=\sum_{D} a_{\mu, D} \mathcal{G}_{\boldsymbol{\nu}(\mu, D)}$ and apply $\omega \nabla$.
- By construction, all the LLT Catalanimals $H_{\nu(\mu, D)}$ appearing on the RHS will have the same root ideal data $\left(R_{q}, R_{t}, R_{q t}\right)$.

Putting it all together

- Take HHL formula $\tilde{H}_{\mu}=\sum_{D} a_{\mu, D} \mathcal{G}_{\boldsymbol{\nu}(\mu, D)}$ and apply $\omega \nabla$.
- By construction, all the LLT Catalanimals $H_{\nu(\mu, D)}$ appearing on the RHS will have the same root ideal data $\left(R_{q}, R_{t}, R_{q t}\right)$.
- Collect terms to get $\prod_{\alpha_{i j} \in R_{\mu} \backslash \widehat{R}_{\mu}}\left(1-q^{\operatorname{arm}\left(b_{i}\right)+1} t^{-\operatorname{leg}\left(b_{i}\right)} z_{i} / z_{j}\right)$ factor.

$$
\tilde{H}_{\mu}=\omega \boldsymbol{\sigma}\left(z_{1} \cdots z_{n} \frac{\prod_{\alpha_{i j} \in R_{\mu} \backslash \widehat{R}_{\mu}}\left(1-q^{\operatorname{arm}\left(b_{i}\right)+1} t^{-\operatorname{leg}\left(b_{i}\right)} z_{i} / z_{j}\right) \prod_{\alpha \in \widehat{R}_{\mu}}\left(1-q t z^{\alpha}\right)}{\prod_{\alpha \in R_{+}}\left(1-q z^{\alpha}\right) \prod_{\alpha \in R_{\mu}}\left(1-t \boldsymbol{z}^{\alpha}\right)}\right) .
$$

Outline

(1) Background on symmetric functions and Macdonald polynomials
(2) A new formula for Macdonald polynomials
(3) LLT polynomials in the elliptic Hall algebra

Elliptic Hall Algebra

Burban and Schiffmann studied a subalgebra \mathcal{E} of the Hall algebra of coherent sheaves on an elliptic curve over \mathbb{F}_{p}.

The elliptic Hall algebra \mathcal{E} is generated by subalgebras $\Lambda\left(X^{a, b}\right)$ isomorphic to the ring of symmetric functions Λ over $\mathbb{k}=\mathbb{Q}(q, t)$, one for each coprime pair $(a, b) \in \mathbb{Z}^{2}$, along with an additional central subalgebra.

Shuffle algebra

Define a linear map

$$
\sigma_{\Gamma}: \bigoplus_{n} \mathbb{k}\left(z_{1}, \ldots, z_{n}\right) \rightarrow \bigoplus_{n} \mathbb{k}\left(z_{1}, \ldots, z_{n}\right)^{S_{n}}
$$

whose graded components σ_{Γ}^{n} are given by

Shuffle algebra

Define a linear map

$$
\sigma_{\Gamma}: \bigoplus_{n} \mathbb{k}\left(z_{1}, \ldots, z_{n}\right) \rightarrow \bigoplus_{n} \mathbb{k}\left(z_{1}, \ldots, z_{n}\right)^{S_{n}}
$$

whose graded components σ_{Γ}^{n} are given by

$$
\begin{aligned}
& \quad \sigma_{\Gamma}^{n}: \mathbb{k}\left(z_{1}, \ldots, z_{n}\right) \rightarrow \mathbb{k}\left(z_{1}, \ldots, z_{n}\right)^{S_{n}} \\
& \sigma_{\Gamma}^{n}(f)=\sum_{w \in S_{n}} w\left(f\left(z_{1}, \ldots, z_{n}\right) \prod_{1 \leq i<j \leq n} \Gamma\left(z_{i}, z_{j}\right)\right), \\
& \text { where } \Gamma\left(z_{i}, z_{j}\right)=\frac{1-q t z_{i} / z_{j}}{\left(1-z_{j} / z_{i}\right)\left(1-q z_{i} / z_{j}\right)\left(1-t z_{i} / z_{j}\right)}
\end{aligned}
$$

Shuffle algebra

Define a linear map

$$
\sigma_{\Gamma}: \bigoplus_{n} \mathbb{k}\left(z_{1}, \ldots, z_{n}\right) \rightarrow \bigoplus_{n} \mathbb{k}\left(z_{1}, \ldots, z_{n}\right)^{S_{n}}
$$

whose graded components σ_{Γ}^{n} are given by

$$
\begin{aligned}
& \quad \sigma_{\Gamma}^{n}: \mathbb{k}\left(z_{1}, \ldots, z_{n}\right) \rightarrow \mathbb{k}\left(z_{1}, \ldots, z_{n}\right)^{S_{n}} \\
& \sigma_{\Gamma}^{n}(f)=\sum_{w \in S_{n}} w\left(f\left(z_{1}, \ldots, z_{n}\right) \prod_{1 \leq i<j \leq n} \Gamma\left(z_{i}, z_{j}\right)\right), \\
& \text { where } \Gamma\left(z_{i}, z_{j}\right)=\frac{1-q t z_{i} / z_{j}}{\left(1-z_{j} / z_{i}\right)\left(1-q z_{i} / z_{j}\right)\left(1-t z_{i} / z_{j}\right)}
\end{aligned}
$$

The shuffle algebra \mathcal{S}_{Γ} is the image of $\bigoplus_{n} \mathbb{k}\left[z_{1}^{ \pm 1}, \ldots, z_{n}^{ \pm 1}\right]$ under the map σ_{Γ}, equipped with a variant of the concatenation product.

Shuffle algebra

Define a linear map

$$
\sigma_{\Gamma}: \bigoplus_{n} \mathbb{k}\left(z_{1}, \ldots, z_{n}\right) \rightarrow \bigoplus_{n} \mathbb{k}\left(z_{1}, \ldots, z_{n}\right)^{S_{n}}
$$

whose graded components σ_{Γ}^{n} are given by

$$
\begin{gathered}
\sigma_{\Gamma}^{n}: \mathbb{k}\left(z_{1}, \ldots, z_{n}\right) \rightarrow \mathbb{k}\left(z_{1}, \ldots, z_{n}\right)^{S_{n}} \\
\sigma_{\Gamma}^{n}(f)=\sum_{w \in S_{n}} w\left(f\left(z_{1}, \ldots, z_{n}\right) \prod_{1 \leq i<j \leq n} \Gamma\left(z_{i}, z_{j}\right)\right), \\
\text { where } \Gamma\left(z_{i}, z_{j}\right)=\frac{1-q t z_{i} / z_{j}}{\left(1-z_{j} / z_{i}\right)\left(1-q z_{i} / z_{j}\right)\left(1-t z_{i} / z_{j}\right)}
\end{gathered}
$$

The shuffle algebra \mathcal{S}_{Γ} is the image of $\bigoplus_{n} \mathbb{k}\left[z_{1}^{ \pm 1}, \ldots, z_{n}^{ \pm 1}\right]$ under the map σ_{Γ}, equipped with a variant of the concatenation product.

Nice fact (up to some modifications of definitions)

Some Catalanimals are elements in \mathcal{S}_{Γ}. ("Tame Catalanimals")

Shuffle to elliptic Hall isomorphism

- The right half-plane subalgebra $\mathcal{E}^{+} \subseteq \mathcal{E}$ is generated by $\Lambda\left(X^{a, b}\right)$ for $a>0$.

Shuffle to elliptic Hall isomorphism

- The right half-plane subalgebra $\mathcal{E}^{+} \subseteq \mathcal{E}$ is generated by $\Lambda\left(X^{a, b}\right)$ for $a>0$.
- $\mathcal{S}_{\Gamma}=\sigma_{\Gamma}\left(\bigoplus_{n} \mathbb{k}\left[z_{1}^{ \pm 1}, \ldots, z_{n}^{ \pm 1}\right]\right)$ (Γ-symmetrized Laurent polynomials).

Shuffle to elliptic Hall isomorphism

- The right half-plane subalgebra $\mathcal{E}^{+} \subseteq \mathcal{E}$ is generated by $\Lambda\left(X^{a, b}\right)$ for $a>0$.
- $\mathcal{S}_{\Gamma}=\sigma_{\Gamma}\left(\bigoplus_{n} \mathbb{k}\left[z_{1}^{ \pm 1}, \ldots, z_{n}^{ \pm 1}\right]\right)$ (Γ-symmetrized Laurent polynomials).

Theorem (Schiffmann-Vasserot)

There is an algebra isomorphism $\psi: \mathcal{S}_{\Gamma} \rightarrow \mathcal{E}^{+}$.

Elliptic Hall algebra action

Schiffmann-Vasserot and Feigin-Tsymbaliuk constructed an action of \mathcal{E} on Λ, where $f\left(X^{0,1}\right)$ acts by multiplication by $f(X)$.

Elliptic Hall algebra action

Schiffmann-Vasserot and Feigin-Tsymbaliuk constructed an action of \mathcal{E} on Λ, where $f\left(X^{0,1}\right)$ acts by multiplication by $f(X)$.

Proposition

Conjugation by ∇ provides a symmetry of the action of \mathcal{E} on Λ,

$$
\nabla f\left(X^{a, b}\right) \nabla^{-1}=f\left(X^{a+b, b}\right)
$$

Elliptic Hall algebra action

Schiffmann-Vasserot and Feigin-Tsymbaliuk constructed an action of \mathcal{E} on Λ, where $f\left(X^{0,1}\right)$ acts by multiplication by $f(X)$.

Proposition

Conjugation by ∇ provides a symmetry of the action of \mathcal{E} on Λ,

$$
\nabla f\left(X^{a, b}\right) \nabla^{-1}=f\left(X^{a+b, b}\right)
$$

Corollary

$f\left(X^{1,1}\right) \cdot 1=\nabla f\left(X^{0,1}\right) \nabla^{-1} \cdot 1=\nabla f$.

Elliptic Hall algebra action

Schiffmann-Vasserot and Feigin-Tsymbaliuk constructed an action of \mathcal{E} on Λ, where $f\left(X^{0,1}\right)$ acts by multiplication by $f(X)$.

Proposition

Conjugation by ∇ provides a symmetry of the action of \mathcal{E} on Λ,

$$
\nabla f\left(X^{a, b}\right) \nabla^{-1}=f\left(X^{a+b, b}\right)
$$

Corollary

$f\left(X^{1,1}\right) \cdot 1=\nabla f\left(X^{0,1}\right) \nabla^{-1} \cdot 1=\nabla f$.

Theorem (Blasiak-Haiman-Morse-Pun-S.)
Let H be a Catalanimal such that $\psi(H)=f\left(X^{1,1}\right)$. Then

$$
\nabla f=\omega H
$$

Shuffle to elliptic Hall summary

$$
\begin{aligned}
& \mathcal{E} \curvearrowright \wedge \quad f\left(X^{1,1}\right) \cdot 1=\nabla f \\
& \bigoplus \underset{\substack{a>0 \\
b \in \mathbb{Z}}}{ } \Lambda\left(X^{a, b}\right) \underset{\text { v.sp. }}{\cong} \mathcal{E}^{+} \\
& (a, b)=1 \\
& { }_{\psi} \uparrow \cong \\
& \sigma_{\Gamma}\left(\bigoplus_{n} \mathbb{k}\left[z_{1}^{ \pm 1}, \ldots, z_{n}^{ \pm 1}\right]\right) \xlongequal[\text { v.sp. }]{\cong} \mathcal{S}_{\Gamma} \ni H \quad \text { "tame" Catalanimal }
\end{aligned}
$$

Theorem (Blasiak-Haiman-Morse-Pun-S.)
$\psi(H)=f\left(X^{1,1}\right) \Longrightarrow f\left(X^{1,1}\right) \cdot 1=\nabla f=\omega H$.

Proof of $\nabla \mathcal{G}_{\nu}$ formula

(1) LLT Catalanimals H_{ν} are tame.
(2) LLT Catalanimals lie in $\psi^{-1}\left(\Lambda\left(X^{1,1}\right)\right)$.
(3) Describe coproduct Δ on \mathcal{E} explicitly on tame Catalanimals and show ΔH_{ν} matches $\Delta \mathcal{G}_{\nu}$.
(9) Conclude $\psi\left(H_{\nu}\right)=c_{\nu}^{-1} \mathcal{G}_{\nu}\left(X^{1,1}\right) \in \mathcal{E}$.
(5) Apply previous theorem to conclude $\nabla \mathcal{G}_{\nu}=c_{\nu} \omega H_{\nu}$

A positivity conjecture

What can this formula tell us that other formulas for Macdonald polynomials do not?

A positivity conjecture

What can this formula tell us that other formulas for Macdonald polynomials do not?

$$
\left.\tilde{H}_{\mu}^{(s)}:=\omega \boldsymbol{\sigma}\left(z_{1} \cdots z_{n}\right)^{s} \frac{\prod_{\alpha_{i j} \in R_{\mu} \backslash \widehat{R}_{\mu}}\left(1-q^{\operatorname{arm}\left(b_{i}\right)+1} t^{-\operatorname{leg}\left(b_{i}\right)} z_{i} / z_{j}\right) \prod_{\alpha \in \widehat{R}_{\mu}}\left(1-q t z^{\alpha}\right)}{\prod_{\alpha \in R_{+}}\left(1-q z^{\alpha}\right) \prod_{\alpha \in R_{\mu}}\left(1-t z^{\alpha}\right)}\right)
$$

Conjecture (Blasiak-Haiman-Morse-Pun-S.)

For any partition μ and positive integer s, the symmetric function $\tilde{H}_{\mu}^{(s)}$ is Schur positive. That is, the coefficients in

$$
\tilde{H}_{\mu}^{(s)}=\sum_{\nu} K_{\nu, \mu}^{(s)}(q, t) s_{\nu}(X)
$$

satisfy $K_{\nu, \mu}^{(s)}(q, t) \in \mathbb{N}[q, t]$.

Thank you!

Blasiak, Jonah, Mark Haiman, Jennifer Morse, Anna Pun, and George H. Seelinger. 2021. LLT Polynomials in the Schiffmann Algebra, arXiv e-prints, arXiv:2112.07063.
_ 2023. A Raising Operator Formula for Macdonald Polynomials, arXiv e-prints, arXiv:2307.06517.

Burban, Igor and Olivier Schiffmann. 2012. On the Hall algebra of an elliptic curve, I, Duke Math. J. 161, no. 7, 1171-1231, DOI 10.1215/00127094-1593263. MR2922373
Feigin, B. L. and Tsymbaliuk, A. I. 2011. Equivariant K-theory of Hilbert Schemes via Shuffle Algebra, Kyoto J. Math. 51, no. 4, 831-854.
Garsia, Adriano M. and Mark Haiman. 1993. A graded representation model for Macdonald's polynomials, Proc. Nat. Acad. Sci. U.S.A. 90, no. 8, 3607-3610, DOI 10.1073/pnas.90.8.3607. MR1214091
Haglund, J., M. Haiman, and N. Loehr. 2005. A Combinatorial Formula for Macdonald Polynomials 18, no. 3, 735-761 (electronic).
Haiman, Mark. 2001. Hilbert schemes, polygraphs and the Macdonald positivity conjecture, J. Amer. Math. Soc. 14, no. 4, 941-1006, DOI 10.1090/S0894-0347-01-00373-3. MR1839919
Lascoux, Alain, Bernard Leclerc, and Jean-Yves Thibon. 1995. Ribbon tableaux, Hall-Littlewood functions and unipotent varieties, Sém. Lothar. Combin. 34, Art. B34g, approx. 23. MR1399754
Negut, Andrei. 2014. The shuffle algebra revisited, Int. Math. Res. Not. IMRN 22, 6242-6275, DOI $10.1093 / \mathrm{imrn} / \mathrm{rnt156}$. MR3283004
Schiffmann, Olivier and Vasserot, Eric. 2013. The Elliptic Hall Algebra and the K-theory of the Hilbert Scheme of A2, Duke Mathematical Journal 162, no. 2, 279-366, DOI 10.1215/00127094-1961849.

Shimozono, Mark and Jerzy Weyman. 2000. Graded Characters of Modules Supported in the Closure of a Nilpotent Conjugacy Class, European Journal of Combinatorics 21, no. 2, 257-288, DOI 10.1006/eujc.1999.0344.
Weyman, J. 1989. The Equations of Conjugacy Classes of Nilpotent Matrices, Inventiones mathematicae 98, no. 2, 229-245, DOI 10.1007/BF01388851.

Catalanimals in the shuffle algebra

For $\lambda \in \mathbb{Z}^{n}$,

$$
\begin{aligned}
\sigma_{\Gamma}^{n}\left(z^{\lambda}\right) & =\sum_{w \in S_{n}} w\left(\frac{z^{\lambda} \prod_{\alpha \in R_{+}}\left(1-q t z^{\alpha}\right)}{\prod_{\alpha \in R_{+}}\left(\left(1-z^{-\alpha}\right)\left(1-q z^{\alpha}\right)\left(1-t z^{\alpha}\right)\right)}\right) \\
& =H\left(R_{+}, R_{+}, R_{+}, \lambda\right) \in \mathcal{S}_{\Gamma}
\end{aligned}
$$

- Technicality: we have redefined
$\boldsymbol{\sigma}\left(\boldsymbol{z}^{\gamma}\right)=\sum_{w \in S_{n}}\left(\frac{\boldsymbol{z}^{\gamma}}{\prod_{\alpha \in R_{+}}\left(1-\boldsymbol{z}^{-\alpha}\right)}\right)=\chi_{\gamma}$, the irreducible GL_{n} character.
- Let pol $_{X}$ send $\chi_{\lambda} \mapsto s_{\lambda}$ if $\lambda_{n} \geq 0$, otherwise $\chi_{\lambda} \mapsto 0$.
- The σ from before is given by $\sigma_{\text {old }}=\mathrm{pol}_{X} \sigma_{\text {new }}$.

Catalanimals in the Shuffle algebra

$\sigma_{\Gamma}^{n}(f)$ can lie in \mathcal{S}_{Γ} even when f is not a Laurent polynomial.

Theorem (Negut)

The following family of Catalanimals lie in the shuffle algebra:

$$
\sigma_{\Gamma}^{n}\left(\frac{z^{\lambda}}{\prod_{i=1}^{n-1}\left(1-q t z_{i} / z_{i+1}\right)}\right)=H\left(R_{+}, R_{+}, R_{+}^{\prime}, \lambda\right) \in \mathcal{S}_{\Gamma}
$$

where

$$
R_{+}^{\prime}=\left\{\alpha_{i j} \in R_{+} \mid i+1<j\right\} .
$$

The wheel condition

- A symmetric Laurent polynomial $g(z)$ satisfies the wheel condition if it vanishes whenever any three of the variables z_{i}, z_{j}, z_{k} are in the ratio $\left(z_{i}: z_{j}: z_{k}\right)=(1: q: q t)=(1: t: q t)$.
- Let $\mathcal{S}_{\Gamma} \cong \mathcal{S}_{\Gamma}$ for $\check{\Gamma}\left(z_{i}, z_{j}\right)=\left(1-z_{i} / z_{j}\right)\left(1-q z_{j} / z_{i}\right)\left(1-t z_{j} / z_{i}\right)\left(1-q t z_{i} / z_{j}\right)$.

Theorem (Negut)

A symmetric Laurent polynomial $g\left(z_{1}, \ldots, z_{n}\right)$ belongs to $\mathcal{S}_{\check{\Gamma}}$ if and only if it satisfies the wheel condition and vanishes whenever $z_{i}=z_{j}$ for $i \neq j$.

The wheel condition and tame Catalanimals

A Catalanimal $H\left(R_{q}, R_{t}, R_{q t}, \lambda\right)$ is tame if

$$
R_{q}+R_{t} \subseteq R_{q t}
$$

where $R_{q}+R_{t}=\left\{\alpha+\beta \mid \alpha \in R_{q}, \beta \in R_{t}\right\}$.

The Catalanimals $H\left(R_{+}, R_{+}, R_{+}^{\prime}, \lambda\right)$ and the LLT Catalanimals are tame. Using Negut's theorem, we show: Tame Catalanimals belong to the shuffle algebra \mathcal{S}_{Γ}.

