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© Background on symmetric functions and Macdonald
polynomials

@ A new formula for Macdonald polynomials

© LLT polynomials in the elliptic Hall algebra
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Symmetric Group

e Permutations o: {1,2,...,n} = {1,2,...,n}:

12 3 4\
2 31 4)
e For f € Q[x, ..., xn] multivariate polynomial, o € S, acts as

O’.f(Xl,Xg, ces 7Xn) = f(XU(l), Xa(2)7 oo 7Xa(n))

1 2 3
<3 5 1) (5x7 + 5x3 4 8x3) = 8x% + 5x3 + 5x3
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Generators
e = E Xiy Xip + ++ Xj, or hy = E Xiy Xip * + * Xj,
N<ip<--<ir i1 <ip<--<iy
e E.g.for n=3,

e1 =x1+x+x3=h
2 2 2
& = x1x20 + x1X3 + X0x3  hy = X + x1X2 + X1X3 + X5 + XoX3 + X3

2 2 2
&3 = x1x0x3  h3 = X3 + xPxo + xPxz + x1x3 4 - - -

o Let A=Qle1, e,...] =Q[h1, hy,...]. Call these "symmetric
functions.”

o Ais a Q-algebra.
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Bases for symmetric functions

Dimension of degree d symmetric functions? Number of partitions of d.

Definition

n € Zo, a partition of niis A = (A1 > Ap > -+ > A\g > 0) such that
AM+X+--+ A =n.

5 — I 24241

441 - Hm 2+1+1+1—>E

]

3+2—Hh 1+1+1+1+1—>E
3+1+1-H

= any basis of degree d symmetric functions can be indexed by
partitions of d.
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Semistandard Young Tableaux

Definition

Filling of partition diagram of A with numbers such that
© strictly increasing up columns
© weakly increasing along rows

Collection is called SSYT(\).

For A = (2,1),

2 3] B [ Bl B 21 3
1[1] [1[1] [2]2] [112] [1]3] [2]3] [1]3] [1]2]
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Polynomials from tableaux

Associate a polynomial to SSYT(A).
1[1] [1]1] [212] [1]2] [1]3] [23] [1]3] [1]2

2 2 2 2 2 2
S(2,1) (X1, X2, X3) = X{ X2 + X7 X3 + X5 X3 + X1X5 + X1X3 + X2X5 + 2X1%X2X3

Definition

For A a partition, set

S\ = z foorxT:Hx,-

TESSYT(N) ieT

@ sy is a symmetric function.

@ {sy}x forms a basis for A.
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Symmetric functions and Schur functions

@ Convention: hg =1 and hy = 0 for d < 0.
e Forany v =(71,...,7vn) € Z", set

sy = det(hy,4j-i)1<ij<n

Then, s, = %5y or 0 for some partition \.
Precisely, for p=(n—1,n—2,...,1,0),

. _ sen(Y + p)Ssort(v4+p)—p If 7+ p has distinct nonnegative parts,
K 0 otherwise,

@ sort() = weakly decreasing sequence obtained by sorting £,
@ sgn(f3) = sign of the shortest permutation taking 3 to sort(f).
Example: So01 = 0, S52-11 = —5200-
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Representation theory and Schur functions

Frobenius charactersitc, Frob: Rep(S,) — A.
@ lIrreducible representations of S,, are labeled by partitions of n.
@ Irreducible S,-representation V/ has Frob(V)) = sy
o U=V & W = Frob(U) = Frob(V) + Frob(W)
o Indg™:’s (V x W) s Frob(V) - Frob(W)
@ Upshot: S,-representations go to symmetric functions in structure
preserving way.

Hidden Guide: Schur Positivity

“Naturally occurring” symmetric functions which are non-negative
(coefficients in N) linear combinations in Schur polynomial basis are
interesting since they could have representation-theoretic models.
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An Example: Harmonic polynomials

Harmonic polynomials
M = polynomials killed by all symmetric differential operators.

Explicitly, for
X12 xp 1
A=det|x3 x 1| =xt(a—x3)—x3(x1 —x3) +x3(x1 — x2)
2 1

M is the vector space given by
M =sp { (8;318)’(’28;3) Ala b,c> O}
=sp{A,2x1(x2 — x3) — X5 + x3,2x2(x3 — x1) — x5 + X3,

X3 — X1,X2 — x3,1}
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Harmonic polynomials

sp{A, 2x1(x2 — x3) — x22 + x§, 2xp(x3 — x1) — x:.;2 + X12,X3 — x1,%2 — x3,1}

@ Break M up into irreducible S,-representations (smallest S, fixed
subspaces).

sp{A} B sp{2x1(xa—x3) x5 +x3, 2x2(x3—x1)—x34+x7 } @ sp{x3—x1, x2—x3} D sp{1}
—— ——
5 - S

@ How many times does an irreducible S,-representation occur?
Frobenius:

613=(X1+X2+X3)3=E+saj+saj+ﬁjjj

Remark: M = (C[Xl,X2,X3]/((C[X1,X2,X3]i3).
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Getting more information

Break M up into irreducible representations.

sp{A} @ sp{2x1 (xo—x3)—x3+X3, 2x2(x3—x1) —Xa4x7 } D sp{xz—x1, x2—x3} ® sp{1}
—— ——

E EE 5 O

deg=2 deg=1

Solution: irreducible S,-representation of polynomials of degree d — g9sy
(graded Frobenius)

7= q3E+ q25:|_|+ qS:|_I+5D]j

Answer: Hall-Littlewood polynomial HE(X; q).
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A Problem

@ In 1988, Macdonald introduces a family of symmetric polynomials
with coefficients in Q(q, t) generalizing Hall-Littlewood polynomials
(and many other famous bases).

@ Defined by orthogonality and triangularity under a certain
inner-product. (Indirect)

@ Garsia modifies these polynomials so

Hy(X; q,t) = Z K,u(g, t)s, conjecturally satisfies Ky,(q,t) € N[q, t]
o
(X _ Al
o H)\(X,].,].) =€ -
@ Does there exist a family of Sn—r§gu|ar representations whose bigraded
Frobenius characteristics equal Hy(X; g, t)?
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Garsia-Haiman modules

© Qx1,. s Xny Y1, -+, Yol With o(xi) = X5(iy, 0(¥)) = Yo(j)-
e Garsia-Haiman (1993): M,, = span of partial derivatives of
i—1, j-1
Ay = det(ijyepnem (X Ve )

1 yviox
AB] =det|l y» Xxo| =X3y2 — y3Xo — y1X3 + y1X2 + y3X1 — yox1
1 y3 x3

Mo 1 =sp{A21} ®sp{ys — y1,¥1 — y2} ®sp{x3 — x1,x1 —xo} @ sp{l}
—_—— ~ ——
deg=(1,1) deg=(0,1) deg=(1,0) deg=(0,0)

Irreducible S,-representation with bidegree (a, b) — g7t’sy

FIE‘:I:nt+ts:|_l+qs:|_l+m
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Garsia-Haiman modules

Theorem (Haiman, 2001)

The Garsia-Haiman module M has bigraded Frobenius characteristic
given by Hyx(X;q,t).

@ Proved via connection to the Hilbert Scheme Hilb"(C?).

Hy(X;q,t) = > Kxu(q, t)s, satisfies Kyu(q, t) € N[q, t].

@ No combinatorial description of RAM(q, t).
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Root ideals

Ry = {a,-j [1<i<j< n} denotes the set of positive roots for GL,,
where Qjj = €j — €.

A root ideal W C Ry is an upper order ideal of positive roots.

(12

45

VW = Roots above Dyck path
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Weyl symmetrization

Define the Weyl symmetrization operator o: Q[z;, ..., zF] — A(X) by
linearly extending

z7 = 5,(X)
where 27 = z/* - z)".

Definition
A Catalan function is a symmetric function indexed by a root ideal
VW C Ry and v € Z" given by

H(®;v) =0 (H(i,j)e\ll(l — tZi/Zj))

Denominator factors are understood as geometric series
(1-tzi/z) "V =1+ tzi/z; + t3(zi/z)* + - -




Catalan functions

Definition

A Catalan function is a symmetric function indexed by a root ideal
VY C Ry and v € Z" given by

Pl
H(®:~v) =0
S (H(u)ew(l - tZ,'/Zj))
Example:

vo G v =(111)




Catalan functions

Definition

A Catalan function is a symmetric function indexed by a root ideal
VY C Ry and v € Z" given by

Pl
H(®:~v) =0
S (H(u)ew(l - tZ,'/Zj))
Example:

w:—ﬁ: v =(1,1,1)

HWV;v) = ((1—|-t2+t2—|— )(1+t +t—2+ )z1zzz3>
z3
= s111 + t(s201 + $210) + t3(3-10 + 300 + S31.1) + - -

= s111 + tS10
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A Catalan function for modified Hall-Littlewoods

B,, = set of roots above block diagonal matrix with block sizes pi(,y, - - -, 1

Theorem (Weyman, Shimozono-Weyman)

Zl...zn )
J

H.(X;0,t) = wo

<Ha€BH(1 — tz%)

where z% = z;/z;.

w(sy) = sy for X' the transpose partition of \.
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A formula for H,(X; g, t)

[ ]

b |

bs | by

be | b R, = {a,-j € Ry | south(b;) = bj},
br | bs R, = {aj € Ry | south(b;) < b;}.

row reading order
by < by <+ < by

Theorem (Blasiak-Haiman-Morse-Pun-S.)

The modified Macdonald polynomial I:I# = I:Iu(X; q,t) is given by

H (1 _ qarm(b,-)+1t—leg(b,-)zi/zj) H (1 _ qtza)

wol 2 5 a,-jERu\ﬁu aeﬁu
= 1 DR n
[Toer. (1 - qz2) HaER“ (1-tz2)

‘R:Ez




1@
by 1@
1 [
b
2 ) ®
bs by 1 [
1 [

bs be )

N 1
br by ® R,\R, (tfactors)

partition p = 22211 . R, (t and gt factors)



1 q
g4
e 1 |qt?

B 1 ¢’t?

1-qt ﬁ
1 q
1-¢°t238| 1-q9g2 . 1 g2t
K * Ho2211
1 gt

-3z -1 z

1-?t3%|1-qt'2 1

R\ ﬁu (t factors)

numerator factors 1 — gmtit-leez /7, . Ry (t and gt factors)




g = t = 1 specialization

II (- gmermeeatizz) 11 (- qezn)

wol|lz--z 3 €Ru\Ry .
! Ha€R+ (1 B qzo‘) HCVGR;L (1 a tza)

q:t:1w0' . HQGR}L\,E\;#(]. — za)Ha€§u(1 — za)
F T Tacr. (1= 29) ek, (1 — 29)

o 712,
[laer, (1 —29)

=wh!

:ef



q = 0 specialization

H (1 _ qarm(b;)+1 t—leg(b;)zi/zj) H (1 _ qtza)

N a;j€R.\Ry a€R,
e zp
Ha€R+ (1 B qza) HaeRu (1 B tza)

CI:0 Z]. e zn
— Wo
(HaeRp(l - tzo‘))
:I:IN(X;Ov t)
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Proof of formula for ":/u

Definition

V is the linear operator on symmetric functions satisfying
VA, = t"#Wg"w)H,, where n(u) = >,(i — 1.

@ Start with the Haglund-Haiman-Loehr formula for I:IM as a sum of
LLT polynomials G,(X; q).

@ Apply wV to both sides.

o Use Catalan-like (“Catalanimal”) formula for wV G, (X; q) and collect
terms.
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@ The content of a box in row y, column x is x — y.
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Let v = (v(1),- - -, Y(k)) be a tuple of skew shapes.
@ The content of a box in row y, column x is x — y.

@ Reading order. label boxes by, ..., b, by scanning each diagonal from
southwest to northeast, in order of increasing content.

bs| bs

”:< ., > i

bi| b>
ba | by




LLT Polynomials

Let v = (v(1),- - -, Y(k)) be a tuple of skew shapes.
@ The content of a box in row y, column x is x — y.

@ Reading order. label boxes by, ..., b, by scanning each diagonal from
southwest to northeast, in order of increasing content.

® A pair (a,b) € v is attacking if a precedes b in reading order and

e content(b) = content(a), or
o content(b) = content(a) + 1 and a € v(;), b € vy with i > j.

bs| bs

”:< ., > i

bi| b>
ba | by

Attacking pairs: (b, b3), (b3, ba), (ba, bs), (ba, be), (bs, br), (be, b7), (b7, bs)




LLT Polynomials

Let v = (v(1),- - -, Y(k)) be a tuple of skew shapes.
@ The content of a box in row y, column x is x — y.

@ Reading order. label boxes by, ..., b, by scanning each diagonal from
southwest to northeast, in order of increasing content.

® A pair (a,b) € v is attacking if a precedes b in reading order and

e content(b) = content(a), or
o content(b) = content(a) + 1 and a € v(;), b € vy with i > j.

bs | be

”:< ., > i

b1 | b2
ba | by

AttaCking pairs: (an b3)7 (b37 b4)a (b47 b5)a (b47 b6)7 (b57 b7)a (b67 b7)7 (b7a bS)




LLT Polynomials

Let v = (v(1),- - -, Y(k)) be a tuple of skew shapes.
@ The content of a box in row y, column x is x — y.

@ Reading order. label boxes by, ..., b, by scanning each diagonal from
southwest to northeast, in order of increasing content.

® A pair (a,b) € v is attacking if a precedes b in reading order and

e content(b) = content(a), or
o content(b) = content(a) + 1 and a € v(;), b € vy with i > j.

bs | be

”:< ., > i

bi| b>
ba | by

AttaCking pairs: (b2a b3)7 (b3: b4)a (b47 b5)a (b47 b6)7 (b57 b7); (b67 b7)7 (b7a bS)




LLT Polynomials

Let v = (v(1),- - -, Y(k)) be a tuple of skew shapes.
@ The content of a box in row y, column x is x — y.

@ Reading order. label boxes by, ..., b, by scanning each diagonal from
southwest to northeast, in order of increasing content.

® A pair (a,b) € v is attacking if a precedes b in reading order and

e content(b) = content(a), or
o content(b) = content(a) + 1 and a € v(;), b € vy with i > j.

bs| bs

”:< ., > "

bi| b>
ba | by

Attacking pairs: (by, b3), (b3, bs), (ba, bs), (ba, bs), (bs, bz), (bs, bz), (bz, bg)




LLT Polynomials

Let v = (v(1),- - -, Y(k)) be a tuple of skew shapes.
@ The content of a box in row y, column x is x — y.

@ Reading order. label boxes by, ..., b, by scanning each diagonal from
southwest to northeast, in order of increasing content.

® A pair (a,b) € v is attacking if a precedes b in reading order and

e content(b) = content(a), or
o content(b) = content(a) + 1 and a € v(;), b € vy with i > j.

bs | bs

”:< ., > i

bi| b>
ba | by

AttaCking pairs: (b2a b3)7 (b37 b4)a (b47 b5)a (b47 b6)7 (b57 b7)a (b67 b7)7 (b7a bS)




LLT Polynomials

Let v = (v(1),- - -, Y(k)) be a tuple of skew shapes.
@ The content of a box in row y, column x is x — y.

@ Reading order. label boxes by, ..., b, by scanning each diagonal from
southwest to northeast, in order of increasing content.

® A pair (a,b) € v is attacking if a precedes b in reading order and

e content(b) = content(a), or
o content(b) = content(a) + 1 and a € v(;), b € vy with i > j.

bs| bs

”:< ., > "

bi| b>
by | by

Attacking pairs: (b2, b3), (b3, ba), (ba, bs), (ba, be), (bs. b7), (be, b7), (b7, bs)




LLT Polynomials

Let v = (v(1),- - -, Y(k)) be a tuple of skew shapes.
@ The content of a box in row y, column x is x — y.

@ Reading order. label boxes by, ..., b, by scanning each diagonal from
southwest to northeast, in order of increasing content.

® A pair (a,b) € v is attacking if a precedes b in reading order and

e content(b) = content(a), or
o content(b) = content(a) + 1 and a € v(;), b € vy with i > j.

bs | bs

”:< ., > i

bi| b>
by | by

Attacking pairs: (b2, b3), (b3, ba), (ba, bs), (ba, be), (bs, br), (bs. b7), (b7, bg)




LLT Polynomials

Let v = (v(1),- - -, Y(k)) be a tuple of skew shapes.
@ The content of a box in row y, column x is x — y.

@ Reading order. label boxes by, ..., b, by scanning each diagonal from
southwest to northeast, in order of increasing content.

® A pair (a,b) € v is attacking if a precedes b in reading order and
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@ A semistandard tableau on v is a map T: v — Z, which restricts to a
semistandard tableau on each ;).

@ An attacking inversion in T is an attacking pair (a, b) such
that T(a) > T(b).

The LLT polynomial indexed by a tuple of skew shapes v is
Gu(xiq)= > q™TxT,

TEeSSYT(v)

where inv(T) is the number of attacking inversions in T and x” = [],.,, x7(a)-
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Catalanimals

Definition
The Catalanimal indexed by Ry, Rt, Rgt € Ry and A € Z" is

2> Haeth (1 o qtza) )

H(R,, Re, R ,A)za(
oo HaeRq (1 - qza) [Tocr: (1 - tza)

With n =3,
H(R, Ry, {a3}, (111)) = o

2111 — gtz / z) )
[Ti<icj<3(l = azi/z)(1 — tz;/ z)
=si1+ (g4 t+ g%+ gt + t2)so1 + (qt + ¢° + ¢°t + gt + t3)s3
= wVes.
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LLT Catalanimals

For a tuple of skew shapes v, the LLT Catalanimal H, = H(Rq, Rt, Rgt, )
is determined by

° R+2Rq2Rt2th,

® R \ Ry = pairs of boxes in the same diagonal,

® Ry \ R: = the attacking pairs,

@ R:\ Rq: = pairs going between adjacent diagonals,

@ \: fill each diagonal D of v with
1+ x(D contains a row start) — x(D contains a row end).
Listing this filling in reading order gives .



LLT Catalanimals

B R: \ R, = pairs of boxes in the same diagonal,

B R, \ R: = the attacking pairs,

® R\ Rq: = pairs going between adjacent diagonals,
W Ry = all other pairs,

A: fill each diagonal D of v with

1+ x(D contains a row start) — x(D contains a row end).

bs | be
bs | bg

by | by
bs| by




LLT Catalanimals

B R: \ R, = pairs of boxes in the same diagonal,

B R, \ R: = the attacking pairs,

® R\ Rq: = pairs going between adjacent diagonals,
W Ry = all other pairs,

A: fill each diagonal D of v with

1+ x(D contains a row start) — x(D contains a row end).

210

A, as a filling of v




LLT Catalanimals

Theorem (Blasiak-Haiman-Morse-Pun-S.)

Let v be a tuple of skew shapes and let H, = H(Rq, R¢, Rqt, \) be the
associated LLT Catalanimal. Then

vgu(X; q) = wH,

—c wo_( 2 HaGth (1 —qt za) )
. HaeRq (1 o qza) ]-_-[O!ERt (1 B tza)

for some ¢, € +q”t”.




Haglund-Haiman-Loehr formula

Theorem (Haglund-Haiman-Loehr, 2005)

Au(X:q,t)=>" (H q_arm(“)tleg(“)“) Gu(u,0)(X: q),

D ueD
where
e the sum runs over all subsets D C {(i,j) € u|j > 1}, and

o v(u,D) = (M, ... vK) where k = iy is the number of columns of
p, and V1) is a ribbon of size Wi, i.e., box contents
{~1,-2,...,—puf}, and descent set Des(v()) = {—j| (i,j) € D}.




Haglund-Haiman-Loehr formula example

(X 4.t) = Xp ([Tuep ™) Gy, 0)(X 9)

b
by | b3
by | bs
U
, ,
p p ,
S T
. ,

D = {b1, b, b3} D = {by, b3} D ={b, b} D = {b1, b3}

’ /// //// / //
2 s ;o / / L,
T gle2 t Gl ¢ 1

/D:{bz} /D:{b3} D:{bl} D=9
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Putting it all together

@ Take HHL formula I:IH = >_p a,09u(u,p) and apply wV.

@ By construction, all the LLT Catalanimals H,,(,, py appearing on the
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Putting it all together

@ Take HHL formula I:IH = >_p a,09u(u,p) and apply wV.

@ By construction, all the LLT Catalanimals H,,(,, py appearing on the
RHS will have the same root ideal data (Ry, Rt, Rqt).

o Collect terms to get [[, p \R (1 — grm(bi)+1—lee(b) 7/ 7:) factor.
i ERu\Ry

H (1 _ qarm(b;)+l t—leg(bi)z,-/zj) H (1 — qtzo‘)

A, =wol|z- 2z 2y ERAR, ack, )
g HozER+ (1 - qza) l_LJzGRM (1 - tza)




@ Background on symmetric functions and Macdonald polynomials
@ A new formula for Macdonald polynomials

© LLT polynomials in the elliptic Hall algebra



Elliptic Hall Algebra

Burban and Schiffmann studied a subalgebra £ of the Hall algebra of
coherent sheaves on an elliptic curve over [Fp,.

The elliptic Hall algebra £ is generated by subalgebras A(X??) isomorphic
to the ring of symmetric functions A over k = Q(q, t), one for each
coprime pair (a, b) € 72, along with an additional central subalgebra.
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Define a linear map
or: EBk(zl,...,z,,) — @k(zl,...,z,,)s"
n n

whose graded components o are given by

ol k(z1,. .. z0) = K(z1,. .., 25)>
of(F)= > w(f(z,....z) [[ T(z.2)),
weS, 1<i<j<n

1—qtzi/z
(1-z/z)(1 - qzi/)(1 - tzi/z)

The shuffle algebra St is the image of @, k[zi", ..., zF!] under the map
or, equipped with a variant of the concatenation product.
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Shuffle algebra

Define a linear map
or: EBk(zl,...,z,,) — @k(zl,...,z,,)s"
n n

whose graded components o are given by

ol k(z1,. .. z0) = K(z1,. .., 25)>
of(F)= > w(f(z,....z) [[ T(z.2)),
weS, 1<i<j<n

1-— th,'/Zj

where T'(z;, z;) = (1—z/z)(1 — qzi/z)(1 — tzi/ z)

The shuffle algebra St is the image of @, k[zi", ..., zF!] under the map
or, equipped with a variant of the concatenation product.

Nice fact (up to some modifications of definitions)

Some Catalanimals are elements in Sr. (“Tame Catalanimals”)
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Shuffle to elliptic Hall isomorphism

o The right half-plane subalgebra £t C £ is generated by A(X??) for
a>0.

e Sr=or (@nk[zlﬂ, ..., zE]) (T-symmetrized Laurent polynomials).

’en

Theorem (Schiffmann-Vasserot)

There is an algebra isomorphism 1. S — ET.
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A, where f(X%1) acts by multiplication by f(X).
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Elliptic Hall algebra action

Schiffmann-Vasserot and Feigin-Tsymbaliuk constructed an action of £ on
A, where f(X%1) acts by multiplication by f(X).

Proposition

Conjugation by V provides a symmetry of the action of £ on A,
V(XY VT = F(X7TRP),

(XM 1=vVFAXOH VL. 1=VFf.

Theorem (Blasiak-Haiman-Morse-Pun-S.)

Let H be a Catalanimal such that 1»(H) = f(X%). Then

Vf=wH.




Shuffle to elliptic Hall summary

En N f(XV).1=VFf

@ a>0 /\(Xa b) v? g"l‘
(a1 T

o

or (EBn]k[zlﬂ, ., ziY) o Sr 2 H  “tame” Catalanimal

Theorem (Blasiak-Haiman-Morse-Pun-S.)

W(H) = F(XPY) = F(X11) -1 = Vf = wH.




Proof of VG, formula

@ LLT Catalanimals H,, are tame.
@ LLT Catalanimals lie in ¢y~ 1(A(X11)).

© Describe coproduct A on £ explicitly on tame Catalanimals and show
AH, matches AG, .

@ Conclude ¥(H,) = ¢, 1G, (X)) e €.
© Apply previous theorem to conclude VG, = c,wH,
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What can this formula tell us that other formulas for Macdonald
polynomials do not?



A positivity conjecture

What can this formula tell us that other formulas for Macdonald
polynomials do not?

H (1 _ qarm(b,-)+1 tfleg(b,-)zl_/zj) H (1 _ qtza)

a;€R,\R, a€R,
[Toer, (1—qz%) HaeRu (1-tz2)

46) = wo | (z1-- - 2z,)°

Conjecture (Blasiak-Haiman-Morse-Pun-S.)

For any partition x and positive integer s, the symmetric function I:Il(f) is
Schur positive. That is, the coefficients in

AR =3 KENa. 1) s(X)

v

satisfy K,Si}(q, t) € N|q, t].




Thank you!
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Catalanimals in the shuffle algebra

For A € Z",

neoay 2 Ha6R+ (1 _ qtzo‘)
(AR I\ e (e )

weS,
= H(R-l-a R—l—a R—H )‘) € Sr.

@ Technicality: we have redefined

o(27) =3 es m) = X, the irreducible GL,
n aeRyL
character.
@ Let poly send x> sy if A, > 0, otherwise ) — 0.

@ The o from before is given by ood = polx O new-



Catalanimals in the Shuffle algebra

of(f) can lie in St even when f is not a Laurent polynomial.

Theorem (Negut)

The following family of Catalanimals lie in the shuffle algebra:

P

<H7:_11(1 — qtz;/zi41)

where R\ ={aj € Ry |i+1<j}.

n

or

) = H(R., R+, R\, \) € Sr,




The wheel condition

@ A symmetric Laurent polynomial g(z) satisfies the wheel condition if
it vanishes whenever any three of the variables z;, z;, z, are in the
ratio (zi 1 zj:zx) = (1:q: qt) = (1:t: qt).

o Let Sr— = Sr for
[(z1,2) = (1 - z/2)(1 - gz/2)(1 - tz/z)(1 - qtzi/z).

Theorem (Negut)

A symmetric Laurent polynomial g(z1,...,z,) belongs to Sg if and only if
it satisfies the wheel condition and vanishes whenever z; = z; for i # j.




The wheel condition and tame Catalanimals

A Catalanimal H(Rg, Rt, Rgt, A) is tame if
Rq + Rt C Ry,
where Ry + R ={a+ 5| ae Ry, B € Re}.
Ry \ Ry

Rq \ Re
Re \ Rt

The Catalanimals H(R4, R, R/, A) and the LLT Catalanimals are tame.

Using Negut's theorem, we show: Tame Catalanimals belong to the shuffle
algebra Sr.
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