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Symmetric Group

Permutations σ : {1, 2, . . . , n} → {1, 2, . . . , n}:

(
1 2 3 4
2 3 1 4

)
=

For f ∈ Q[x1, . . . , xn] multivariate polynomial, σ ∈ Sn acts as
σ.f (x1, x2, . . . , xn) = f (xσ(1), xσ(2), . . . , xσ(n))(

1 2 3
3 2 1

)
(5x21 + 5x22 + 8x23 ) = 8x21 + 5x22 + 5x23
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Symmetric Polynomials

Polynomials f ∈ Q[x1, . . . , xn] satisfying σ.f = f for all σ ∈ Sn.

Generators

er =
∑

i1<i2<···<ir

xi1xi2 · · · xir or hr =
∑

i1≤i2≤···≤ir

xi1xi2 · · · xir

E.g. for n = 3,

e1 = x1 + x2 + x3 =h1

e2 = x1x2 + x1x3 + x2x3 h2 = x21 + x1x2 + x1x3 + x22 + x2x3 + x23

e3 = x1x2x3 h3 = x31 + x21x2 + x21x3 + x1x
2
2 + · · ·

Let Λ = Q[e1, e2, . . .] = Q[h1, h2, . . .]. Call these “symmetric
functions.”

Λ is a Q-algebra.
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Bases for symmetric functions

Dimension of degree d symmetric functions?

Number of partitions of d .

Definition

n ∈ Z>0, a partition of n is λ = (λ1 ≥ λ2 ≥ · · · ≥ λℓ > 0) such that
λ1 + λ2 + · · ·+ λℓ = n.

5 → 2 + 2 + 1 →

4 + 1 → 2 + 1 + 1 + 1 →

3 + 2 → 1 + 1 + 1 + 1 + 1 →

3 + 1 + 1 →

=⇒ any basis of degree d symmetric functions can be indexed by
partitions of d .
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Semistandard Young Tableaux

Definition

Filling of partition diagram of λ with numbers such that

1 strictly increasing up columns

2 weakly increasing along rows

Collection is called SSYT(λ).

For λ = (2, 1),

2
1 1 ,

3
1 1 ,

3
2 2 ,

2
1 2 ,

3
1 3 ,

3
2 3 ,

2
1 3 ,

3
1 2
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Polynomials from tableaux

Associate a polynomial to SSYT(λ).

2
1 1 ,

3
1 1 ,

3
2 2 ,

2
1 2 ,

3
1 3 ,

3
2 3 ,

2
1 3 ,

3
1 2

s(2,1)(x1, x2, x3) = x21x2 + x21x3 + x22x3 + x1x
2
2 + x1x

2
3 + x2x

2
3 + 2x1x2x3

Definition

For λ a partition, set

sλ =
∑

T∈SSYT(λ)

xT for xT =
∏
i∈T

xi

sλ is a symmetric function.

{sλ}λ forms a basis for Λ.
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Symmetric functions and Schur functions

Convention: h0 = 1 and hd = 0 for d < 0.

For any γ = (γ1, . . . , γn) ∈ Zn, set

sγ = det(hγi+j−i )1≤i ,j≤n

Then, sγ = ±sλ or 0 for some partition λ.
Precisely, for ρ = (n − 1, n − 2, . . . , 1, 0),

sγ =

{
sgn(γ + ρ)ssort(γ+ρ)−ρ if γ + ρ has distinct nonnegative parts,

0 otherwise,

sort(β) = weakly decreasing sequence obtained by sorting β,
sgn(β) = sign of the shortest permutation taking β to sort(β).

Example: s201 = 0, s2-11 = −s200.
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Representation theory and Schur functions

Frobenius charactersitc, Frob: Rep(Sn) → Λ.

Irreducible representations of Sn are labeled by partitions of n.

Irreducible Sn-representation Vλ has Frob(Vλ) = sλ

U ∼= V ⊕W =⇒ Frob(U) = Frob(V ) + Frob(W )

IndSm+n

Sm×Sn
(V ×W ) 7→ Frob(V ) · Frob(W )

Upshot: Sn-representations go to symmetric functions in structure
preserving way.

Hidden Guide: Schur Positivity

“Naturally occurring” symmetric functions which are non-negative
(coefficients in N) linear combinations in Schur polynomial basis are
interesting since they could have representation-theoretic models.
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An Example: Harmonic polynomials

Harmonic polynomials

M = polynomials killed by all symmetric differential operators.

Explicitly, for

∆ = det

∣∣∣∣∣∣
x21 x1 1
x22 x2 1
x23 x3 1

∣∣∣∣∣∣ = x21 (x2 − x3)− x22 (x1 − x3) + x23 (x1 − x2)

M is the vector space given by

M =sp
{(
∂ax1∂

b
x2∂

c
x3

)
∆ | a, b, c ≥ 0

}
=sp{∆, 2x1(x2 − x3)− x22 + x23 , 2x2(x3 − x1)− x23 + x21 ,

x3 − x1, x2 − x3, 1}
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Harmonic polynomials

sp{∆, 2x1(x2 − x3)− x22 + x23 , 2x2(x3 − x1)− x23 + x21 , x3 − x1, x2 − x3, 1}

1 Break M up into irreducible Sn-representations (smallest Sn fixed
subspaces).

sp{∆}︸ ︷︷ ︸⊕ sp{2x1(x2−x3)−x22+x23 , 2x2(x3−x1)−x23+x21}︸ ︷︷ ︸⊕ sp{x3−x1, x2−x3}︸ ︷︷ ︸⊕ sp{1}︸ ︷︷ ︸

2 How many times does an irreducible Sn-representation occur?
Frobenius:

e31 = (x1 + x2 + x3)
3 = s + s + s + s

Remark: M ∼= C[x1, x2, x3]/(C[x1, x2, x3]S3+ ).
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sp{∆}︸ ︷︷ ︸⊕ sp{2x1(x2−x3)−x22+x23 , 2x2(x3−x1)−x23+x21}︸ ︷︷ ︸⊕ sp{x3−x1, x2−x3}︸ ︷︷ ︸⊕ sp{1}︸ ︷︷ ︸

2 How many times does an irreducible Sn-representation occur?
Frobenius:

e31 = (x1 + x2 + x3)
3 = s + s + s + s

Remark: M ∼= C[x1, x2, x3]/(C[x1, x2, x3]S3+ ).
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Getting more information

Break M up into irreducible representations.

sp{∆}︸ ︷︷ ︸⊕ sp{2x1(x2−x3)−x22+x23 , 2x2(x3−x1)−x23+x21}︸ ︷︷ ︸
deg=2

⊕ sp{x3−x1, x2−x3}︸ ︷︷ ︸
deg=1

⊕ sp{1}︸ ︷︷ ︸

Solution: irreducible Sn-representation of polynomials of degree d 7→ qdsλ
(graded Frobenius)

?? = q3s + q2s + qs + s

Answer: Hall-Littlewood polynomial H (X ; q).
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A Problem

In 1988, Macdonald introduces a family of symmetric polynomials
with coefficients in Q(q, t) generalizing Hall-Littlewood polynomials
(and many other famous bases).

Defined by orthogonality and triangularity under a certain
inner-product. (Indirect)

Garsia modifies these polynomials so

H̃λ(X ; q, t) =
∑
µ

K̃λµ(q, t)sµ conjecturally satisfies K̃λµ(q, t) ∈ N[q, t]

H̃λ(X ; 1, 1) = e
|λ|
1 .

Does there exist a family of Sn-regular representations whose bigraded
Frobenius characteristics equal H̃λ(X ; q, t)?
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Garsia-Haiman modules

Q[x1, . . . , xn, y1, . . . , yn] with σ(xi ) = xσ(i), σ(yj) = yσ(j).

Garsia-Haiman (1993): Mµ = span of partial derivatives of

∆µ = det(i ,j)∈µ,k∈[n](x
i−1
k y j−1

k )

∆ = det

∣∣∣∣∣∣
1 y1 x1
1 y2 x2
1 y3 x3

∣∣∣∣∣∣ = x3y2 − y3x2 − y1x3 + y1x2 + y3x1 − y2x1

M2,1 = sp{∆2,1}︸ ︷︷ ︸
deg=(1,1)

⊕ sp{y3 − y1, y1 − y2}︸ ︷︷ ︸
deg=(0,1)

⊕ sp{x3 − x1, x1 − x2}︸ ︷︷ ︸
deg=(1,0)

⊕ sp{1}︸ ︷︷ ︸
deg=(0,0)

Irreducible Sn-representation with bidegree (a, b) 7→ qatbsλ

H̃ = qts + ts + qs + s
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Garsia-Haiman modules

Theorem (Haiman, 2001)

The Garsia-Haiman module Mλ has bigraded Frobenius characteristic
given by H̃λ(X ; q, t).

Proved via connection to the Hilbert Scheme Hilbn(C2).

Corollary

H̃λ(X ; q, t) =
∑

µ K̃λµ(q, t)sµ satisfies K̃λµ(q, t) ∈ N[q, t].

No combinatorial description of K̃λµ(q, t).
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Root ideals

R+ =
{
αij | 1 ≤ i < j ≤ n

}
denotes the set of positive roots for GLn,

where αij = ϵi − ϵj .
(12)(13)(14)(15)

(23)(24)(25)

(34)(35)

(45)

A root ideal Ψ ⊆ R+ is an upper order ideal of positive roots.

(12)(13)(14)(15)

(23)(24)(25)

(34)(35)

(45)

Ψ = Roots above Dyck path
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Weyl symmetrization

Define the Weyl symmetrization operator σ : Q[z±1
1 , . . . , z±1

n ] → Λ(X ) by
linearly extending

zγ 7→ sγ(X )

where zγ = zγ11 · · · zγnn .

Definition

A Catalan function is a symmetric function indexed by a root ideal
Ψ ⊆ R+ and γ ∈ Zn given by

H(Φ; γ) = σ

(
zγ∏

(i ,j)∈Ψ(1− tzi/zj)

)

Denominator factors are understood as geometric series
(1− tzi/zj)

−1 = 1 + tzi/zj + t2(zi/zj)
2 + · · ·
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Catalan functions

Definition

A Catalan function is a symmetric function indexed by a root ideal
Ψ ⊆ R+ and γ ∈ Zn given by

H(Φ; γ) = σ

(
zγ∏

(i ,j)∈Ψ(1− tzi/zj)

)

Example:

Ψ = γ = (1, 1, 1)

H(Ψ; γ) = σ

(
(1 + t

z1
z2

+ t2
z21
z22

+ · · · )(1 + t
z1
z3

+ t2
z21
z23

+ · · · )z1z2z3
)

= s111 + t(s201 + s210) + t2(s3-10 + s300 + s31-1) + · · ·
= s111 + ts210
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A Catalan function for modified Hall-Littlewoods

Bµ = set of roots above block diagonal matrix with block sizes µℓ(µ), . . . , µ1

B3321 =

Theorem (Weyman, Shimozono-Weyman)

H̃µ(X ; 0, t) = ωσ
( z1 · · · zn∏

α∈Bµ
(1− tzα)

)
,

where zα = zi/zj .

ω(sλ) = sλ′ for λ
′ the transpose partition of λ.
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Catalan functions for modified Hall-Littlewoods

b1

b2 b3

b4 b5 b6

b7 b8 b9

row reading order

b1 ≺ b2 ≺ · · · ≺ bn

Rµ :=
{
αij ∈ R+ | south(bi ) ⪯ bj

}
.

R3321 =

H̃µ(X ; 0, t) = ωσ
( z1 · · · zn∏

α∈Bµ
(1− tzα)

)
,

= ωσ
( z1 · · · zn∏

α∈Rµ
(1− tzα)

)
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A formula for H̃µ(X ; q, t)

b1

b2

b3 b4

b5 b6

b7 b8

row reading order

b1 ≺ b2 ≺ · · · ≺ bn

Rµ :=
{
αij ∈ R+ | south(bi ) ⪯ bj

}
,

R̂µ :=
{
αij ∈ R+ | south(bi ) ≺ bj

}
.

Theorem (Blasiak-Haiman-Morse-Pun-S.)
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q = t = 1 specialization
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1− qzα
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α∈Rµ

(
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q=t=1→ ωσ

(
z1 · · · zn

∏
α∈Rµ\R̂µ

(1− zα)
∏
α∈R̂µ

(1− zα)∏
α∈R+

(1− zα)
∏
α∈Rµ

(1− zα)

)

=ωσ

(
z1 · · · zn∏

α∈R+
(1− zα)

)
=ωhn1

=en1



q = 0 specialization

ωσ

(
z1 · · · zn

∏
αij∈Rµ\R̂µ

(
1− qarm(bi )+1t−leg(bi )zi/zj

) ∏
α∈R̂µ

(
1− qtzα

)
∏
α∈R+

(
1− qzα

)∏
α∈Rµ

(
1− tzα

) )
q=0→ ωσ

(
z1 · · · zn∏

α∈Rµ
(1− tzα)

)
=H̃µ(X ; 0, t)



Proof of formula for H̃µ

Definition

∇ is the linear operator on symmetric functions satisfying
∇H̃µ = tn(µ)qn(µ

∗)H̃µ, where n(µ) =
∑

i (i − 1)µi .

Start with the Haglund-Haiman-Loehr formula for H̃µ as a sum of
LLT polynomials Gν(X ; q).

Apply ω∇ to both sides.

Use Catalan-like (“Catalanimal”) formula for ω∇Gν(X ; q) and collect
terms.
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LLT Polynomials

Let ν = (ν(1), . . . , ν(k)) be a tuple of skew shapes.

The content of a box in row y , column x is x − y .

Reading order: label boxes b1, . . . , bn by scanning each diagonal from
southwest to northeast, in order of increasing content.

A pair (a, b) ∈ ν is attacking if a precedes b in reading order and

content(b) = content(a), or
content(b) = content(a) + 1 and a ∈ ν(i), b ∈ ν(j) with i > j .

ν =

(
,

)

Attacking pairs: (b2, b3), (b3, b4), (b4, b5), (b4, b6), (b5, b7), (b6, b7), (b7, b8)
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LLT Polynomials

A semistandard tableau on ν is a map T : ν → Z+ which restricts to a
semistandard tableau on each ν(i).

An attacking inversion in T is an attacking pair (a, b) such
that T (a) > T (b).

The LLT polynomial indexed by a tuple of skew shapes ν is

Gν(x ; q) =
∑

T∈SSYT(ν)

qinv(T )xT ,

where inv(T ) is the number of attacking inversions in T and xT =
∏

a∈ν xT (a).

T =

2 4

3 5

5 6

1 1

inv(T ) = 4, xT = x21 x2x3x4x
2
5 x6
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Catalanimals

Definition

The Catalanimal indexed by Rq,Rt ,Rqt ⊆ R+ and λ ∈ Zn is

H(Rq,Rt ,Rqt , λ) = σ

( zλ
∏
α∈Rqt

(
1− qtzα

)∏
α∈Rq

(
1− qzα

)∏
α∈Rt

(
1− tzα

)).
With n = 3,

H(R+,R+, {α13}, (111)) = σ
( z111(1− qtz1/z3)∏

1≤i<j≤3(1− qzi/zj)(1− tzi/zj)

)
= s111 + (q + t + q2 + qt + t2)s21 + (qt + q3 + q2t + qt2 + t3)s3

= ω∇e3.
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LLT Catalanimals

For a tuple of skew shapes ν, the LLT Catalanimal Hν = H(Rq,Rt ,Rqt , λ)
is determined by

R+ ⊇ Rq ⊇ Rt ⊇ Rqt ,

R+ \ Rq = pairs of boxes in the same diagonal,

Rq \ Rt = the attacking pairs,

Rt \ Rqt = pairs going between adjacent diagonals,

λ: fill each diagonal D of ν with
1 + χ(D contains a row start)− χ(D contains a row end).
Listing this filling in reading order gives λ.
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LLT Catalanimals

R+ \ Rq = pairs of boxes in the same diagonal,
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Rqt = all other pairs,

λ: fill each diagonal D of ν with
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Rt \ Rqt = pairs going between adjacent diagonals,

Rqt = all other pairs,

λ: fill each diagonal D of ν with
1 + χ(D contains a row start)− χ(D contains a row end).

2 0
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1 0

λ, as a filling of ν
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LLT Catalanimals

Theorem (Blasiak-Haiman-Morse-Pun-S.)

Let ν be a tuple of skew shapes and let Hν = H(Rq,Rt ,Rqt , λ) be the
associated LLT Catalanimal. Then

∇Gν(X ; q) = cν ωHν

= cν ωσ

( zλ
∏
α∈Rqt

(
1− qt zα

)∏
α∈Rq

(
1− q zα

)∏
α∈Rt

(
1− t zα

))
for some cν ∈ ±qZtZ.



Haglund-Haiman-Loehr formula

Theorem (Haglund-Haiman-Loehr, 2005)

H̃µ(X ; q, t) =
∑
D

(∏
u∈D

q−arm(u)t leg(u)+1

)
Gν(µ,D)(X ; q) ,

where

the sum runs over all subsets D ⊆ {(i , j) ∈ µ | j > 1}, and
ν(µ,D) = (ν(1), . . . , ν(k)) where k = µ1 is the number of columns of
µ, and ν(i) is a ribbon of size µ∗i , i.e., box contents
{−1,−2, . . . ,−µ∗i }, and descent set Des(ν(i)) = {−j | (i , j) ∈ D}.



Haglund-Haiman-Loehr formula example

H̃µ(X ; q, t) =
∑

D

(∏
u∈D q−arm(u)t leg(u)+1

)
Gν(µ,D)(X ; q)

b1

b2 b3

b4 b5

µ

1

2

3

4

5

D = {b1, b2, b3}

q91t4
1 2

3

4

5

D = {b2, b3}

q91t3

1

2

3

4

5

D = {b1, b2}

q91t3
1

2

3

4

5

D = {b1, b3}
t2

1 2

3

4

5

D = {b2}

q91t2 1 2

3

4

5

D = {b3}

t
1

2

3

4

5

D = {b1}

t 1 2

3

4

5

D = ∅

1



Putting it all together

Take HHL formula H̃µ =
∑

D aµ,DGν(µ,D) and apply ω∇.

By construction, all the LLT Catalanimals Hν(µ,D) appearing on the
RHS will have the same root ideal data (Rq,Rt ,Rqt).

Collect terms to get
∏
αij∈Rµ\R̂µ

(1− qarm(bi )+1t−leg(bi )zi/zj) factor.

H̃µ = ωσ

(
z1 · · · zn

∏
αij∈Rµ\R̂µ

(
1− qarm(bi )+1t−leg(bi )zi/zj

) ∏
α∈R̂µ

(
1− qtzα

)
∏

α∈R+

(
1− qzα

)∏
α∈Rµ

(
1− tzα

) )
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Elliptic Hall Algebra

Burban and Schiffmann studied a subalgebra E of the Hall algebra of
coherent sheaves on an elliptic curve over Fp.

The elliptic Hall algebra E is generated by subalgebras Λ(X a,b) isomorphic
to the ring of symmetric functions Λ over k = Q(q, t), one for each
coprime pair (a, b) ∈ Z2, along with an additional central subalgebra.



Shuffle algebra

Define a linear map

σΓ :
⊕
n

k(z1, . . . , zn) →
⊕
n

k(z1, . . . , zn)Sn

whose graded components σnΓ are given by

σnΓ : k(z1, . . . , zn) → k(z1, . . . , zn)Sn

σnΓ(f ) =
∑
w∈Sn

w
(
f (z1, . . . , zn)

∏
1≤i<j≤n

Γ(zi , zj)
)
,

where Γ(zi , zj) =
1− qtzi/zj

(1− zj/zi )(1− qzi/zj)(1− tzi/zj)

The shuffle algebra SΓ is the image of
⊕

n k[z
±1
1 , . . . , z±1

n ] under the map
σΓ, equipped with a variant of the concatenation product.

Nice fact (up to some modifications of definitions)

Some Catalanimals are elements in SΓ. (“Tame Catalanimals”)
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Shuffle to elliptic Hall isomorphism

The right half-plane subalgebra E+ ⊆ E is generated by Λ(X a,b) for
a > 0.

SΓ = σΓ
(⊕

n k[z
±1
1 , . . . , z±1

n ]
)
(Γ-symmetrized Laurent polynomials).

Theorem (Schiffmann-Vasserot)

There is an algebra isomorphism ψ : SΓ → E+.
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Elliptic Hall algebra action

Schiffmann-Vasserot and Feigin-Tsymbaliuk constructed an action of E on
Λ, where f (X 0,1) acts by multiplication by f (X ).

Proposition

Conjugation by ∇ provides a symmetry of the action of E on Λ,

∇ f (X a,b)∇−1 = f (X a+b,b).

Corollary

f (X 1,1) · 1 = ∇f (X 0,1)∇−1 · 1 = ∇f .

Theorem (Blasiak-Haiman-Morse-Pun-S.)

Let H be a Catalanimal such that ψ(H) = f (X 1,1). Then

∇f = ωH .
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Shuffle to elliptic Hall summary

E Λ f (X 1,1) · 1 = ∇f

⊕
a>0
b∈Z

(a,b)=1

Λ(X a,b) E+

σΓ
(⊕

n k[z
±1
1 , . . . , z±1

n ]
)

SΓ H “tame” Catalanimal

↷

∼=
v.sp.

∼=
v.sp.

ψ ∼=

∋

Theorem (Blasiak-Haiman-Morse-Pun-S.)

ψ(H) = f (X 1,1) =⇒ f (X 1,1) · 1 = ∇f = ωH.



Proof of ∇Gν formula

1 LLT Catalanimals Hν are tame.

2 LLT Catalanimals lie in ψ−1(Λ(X 1,1)).

3 Describe coproduct ∆ on E explicitly on tame Catalanimals and show
∆Hν matches ∆Gν .

4 Conclude ψ(Hν) = c−1
ν Gν(X

1,1) ∈ E .
5 Apply previous theorem to conclude ∇Gν = cνωHν



A positivity conjecture

What can this formula tell us that other formulas for Macdonald
polynomials do not?

H̃(s)
µ := ωσ

(z1 · · · zn)s

∏
αij∈Rµ\R̂µ

(
1− qarm(bi )+1t−leg(bi )zi/zj

) ∏
α∈R̂µ

(
1− qtzα

)
∏

α∈R+

(
1− qzα

)∏
α∈Rµ

(
1− tzα

)


Conjecture (Blasiak-Haiman-Morse-Pun-S.)

For any partition µ and positive integer s, the symmetric function H̃
(s)
µ is

Schur positive. That is, the coefficients in

H̃(s)
µ =

∑
ν

K (s)
ν,µ(q, t) sν(X )

satisfy K
(s)
ν,µ(q, t) ∈ N[q, t].
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Thank you!
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Catalanimals in the shuffle algebra

For λ ∈ Zn,

σnΓ(z
λ) =

∑
w∈Sn

w

( zλ
∏
α∈R+

(
1− qtzα

)∏
α∈R+

((
1− z−α

)(
1− qzα

)(
1− tzα

)))
= H(R+,R+,R+, λ) ∈ SΓ.

Technicality: we have redefined

σ(zγ) =
∑

w∈Sn

(
zγ∏

α∈R+
(1−z−α)

)
= χγ , the irreducible GLn

character.

Let polX send χλ 7→ sλ if λn ≥ 0, otherwise χλ 7→ 0.

The σ from before is given by σold = polX σnew.



Catalanimals in the Shuffle algebra

σnΓ(f ) can lie in SΓ even when f is not a Laurent polynomial.

Theorem (Negut)

The following family of Catalanimals lie in the shuffle algebra:

σnΓ

( zλ∏n−1
i=1 (1− qtzi/zi+1)

)
= H(R+,R+,R

′
+, λ) ∈ SΓ,

where R ′
+ = {αij ∈ R+ | i + 1 < j}.



The wheel condition

A symmetric Laurent polynomial g(z) satisfies the wheel condition if
it vanishes whenever any three of the variables zi , zj , zk are in the
ratio (zi : zj : zk) = (1 : q : qt) = (1 : t : qt).

Let SΓ̌
∼= SΓ for

Γ̌(zi , zj) = (1− zi/zj)(1− qzj/zi )(1− tzj/zi )(1− qtzi/zj).

Theorem (Negut)

A symmetric Laurent polynomial g(z1, . . . , zn) belongs to SΓ̌ if and only if
it satisfies the wheel condition and vanishes whenever zi = zj for i ̸= j .



The wheel condition and tame Catalanimals

A Catalanimal H(Rq,Rt ,Rqt , λ) is tame if

Rq + Rt ⊆ Rqt ,

where Rq + Rt = {α+ β | α ∈ Rq, β ∈ Rt}.

1
1

1
1

1tame

1
1

1
1

1not tame

R+ \ Rq

Rq \ Rt

Rt \ Rqt

Rqt

The Catalanimals H(R+,R+,R
′
+, λ) and the LLT Catalanimals are tame.

Using Negut’s theorem, we show: Tame Catalanimals belong to the shuffle
algebra SΓ.
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