A Window into Symmetric Function Theory

George H. Seelinger
ghs9ae@virginia.edu
UVA Math Club
Lightning Round
2 March 2021

Symmetric Group

- Permutations $\sigma:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\}$:

Symmetric Group

- Permutations $\sigma:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\}:$

$$
\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 3 & 1 & 4
\end{array}\right)=0_{0}^{0}
$$

Symmetric Group

- Permutations $\sigma:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\}:$

$$
\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 3 & 1 & 4
\end{array}\right)=0_{0}^{9}
$$

- Stacking = composition

Symmetric Group

- Permutations $\sigma:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\}:$

$$
\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 3 & 1 & 4
\end{array}\right)=\underbrace{0}_{0} 0
$$

- Stacking = composition

Symmetric Group

- Permutations $\sigma:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\}:$

$$
\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 3 & 1 & 4
\end{array}\right)=0_{0}^{0}
$$

- Stacking = composition

- S_{n} is a "group"

Polynomials

- $f \in \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$ multivariate polynomial

Polynomials

- $f \in \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$ multivariate polynomial

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1
\end{array}\right)\left(5 x_{1}^{2}+5 x_{2}^{2}+8 x_{3}^{2}\right)=8 x_{1}^{2}+5 x_{2}^{2}+5 x_{3}^{2}
$$

Polynomials

- $f \in \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$ multivariate polynomial

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1
\end{array}\right)\left(5 x_{1}^{2}+5 x_{2}^{2}+8 x_{3}^{2}\right)=8 x_{1}^{2}+5 x_{2}^{2}+5 x_{3}^{2}
$$

- $\sigma \in S_{n}$ acts as $\sigma . f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=f\left(x_{\sigma(1)}, x_{\sigma(2)}, \ldots, x_{\sigma(n)}\right)$

Symmetric Polynomials

- Polynomials $f \in \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$ satisfying $\sigma . f=f$?

Symmetric Polynomials

- Polynomials $f \in \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$ satisfying $\sigma . f=f$?
- Symmetric polynomials $(n=3)$

$$
\begin{aligned}
& e_{1}=x_{1}+x_{2}+x_{3}=h_{1} \\
& e_{2}=x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3} h_{2}=x_{1}^{2}+x_{1} x_{2}+x_{1} x_{3}+x_{2}^{2}+x_{2} x_{3}+x_{3}^{2} \\
& e_{3}=x_{1} x_{2} x_{3} h_{3}=x_{1}^{3}+x_{1}^{2} x_{2}+x_{1}^{2} x_{3}+x_{1} x_{2}^{2}+\cdots
\end{aligned}
$$

Symmetric Polynomials

- Polynomials $f \in \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$ satisfying $\sigma . f=f$?
- Symmetric polynomials $(n=3)$

$$
\begin{aligned}
& e_{1}=x_{1}+x_{2}+x_{3}=h_{1} \\
& e_{2}=x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3} h_{2}=x_{1}^{2}+x_{1} x_{2}+x_{1} x_{3}+x_{2}^{2}+x_{2} x_{3}+x_{3}^{2} \\
& e_{3}=x_{1} x_{2} x_{3} h_{3}=x_{1}^{3}+x_{1}^{2} x_{2}+x_{1}^{2} x_{3}+x_{1} x_{2}^{2}+\cdots
\end{aligned}
$$

- $\left\{f \in \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right] \mid \sigma . f=f \forall \sigma \in S_{n}\right\}$ forms a vector space, $\Lambda_{\mathbb{Q}}$.

Combinatorics of Symmetric Polynomials

Generators

$$
e_{r}=\sum_{i_{1}<i_{2}<\cdots<i_{r}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{r}} \text { or } h_{r}=\sum_{i_{1} \leq i_{2} \leq \cdots \leq i_{r}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{r}}
$$

Combinatorics of Symmetric Polynomials

Generators

$$
e_{r}=\sum_{i_{1}<i_{2}<\cdots<i_{r}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{r}} \text { or } h_{r}=\sum_{i_{1} \leq i_{2} \leq \cdots \leq i_{r}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{r}}
$$

Symmetric functions are polynomials in the e_{1}, e_{2}, \ldots, or in the h_{1}, h_{2}, \ldots

$$
3 h_{2} h_{1}^{2}-h_{2}^{2}+6 h_{3} h_{1}=3 h_{(211)}-h_{(22)}+6 h_{(31)}
$$

Combinatorics of Symmetric Polynomials

Generators

$$
e_{r}=\sum_{i_{1}<i_{2}<\cdots<i_{r}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{r}} \text { or } h_{r}=\sum_{i_{1} \leq i_{2} \leq \cdots \leq i_{r}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{r}}
$$

Symmetric functions are polynomials in the e_{1}, e_{2}, \ldots, or in the h_{1}, h_{2}, \ldots

$$
3 h_{2} h_{1}^{2}-h_{2}^{2}+6 h_{3} h_{1}=3 h_{(211)}-h_{(22)}+6 h_{(31)}
$$

Basis of $\Lambda_{\mathbb{Q}}$?

Partitions

Definition

$n \in \mathbb{Z}_{>0}$, a partition of n is $\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{\ell}>0\right)$ such that $\lambda_{1}+\lambda_{2}+\cdots+\lambda_{\ell}=n$.

Partitions

Definition

$n \in \mathbb{Z}_{>0}$, a partition of n is $\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{\ell}>0\right)$ such that $\lambda_{1}+\lambda_{2}+\cdots+\lambda_{\ell}=n$.

$$
\begin{aligned}
5 & \rightarrow \square \square \square \\
4+1 & \rightarrow \square \square \\
3+2 & \rightarrow \square \\
3+1+1 & \rightarrow \square
\end{aligned}
$$

Partitions

Partitions by themselves are interesting!

Partitions

Partitions by themselves are interesting!
(1) How many partitions of n ? No known closed-form formula!

Partitions

Partitions by themselves are interesting!
(1) How many partitions of n ? No known closed-form formula!
(2) Many interesting connections to number theory (Ramanujan).

Partitions

Partitions by themselves are interesting!
(1) How many partitions of n ? No known closed-form formula!
(2) Many interesting connections to number theory (Ramanujan).
(3) Generating function for $p(n)=$ number of partitions of n is inverse of Euler ϕ function.

Tableaux

Definition

Filling of partition diagram of λ with numbers such that

Tableaux

Definition

Filling of partition diagram of λ with numbers such that
(1) strictly increasing down columns

Tableaux

Definition

Filling of partition diagram of λ with numbers such that
(1) strictly increasing down columns
(2) weakly increasing along rows

Tableaux

Definition

Filling of partition diagram of λ with numbers such that
(1) strictly increasing down columns
(2) weakly increasing along rows

Collection is called $\operatorname{SSYT}(\lambda)$.

Tableaux

Definition

Filling of partition diagram of λ with numbers such that
(1) strictly increasing down columns
(2) weakly increasing along rows

Collection is called $\operatorname{SSYT}(\lambda)$.
For $\lambda=(2,1)$,

Schur functions

Associate a polynomial to $\operatorname{SSYT}(\lambda)$.

Schur functions

Associate a polynomial to $\operatorname{SSYT}(\lambda)$.

Schur functions

Associate a polynomial to $\operatorname{SSYT}(\lambda)$.

$$
s_{(21)}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2} x_{2}+x_{1}^{2} x_{3}+x_{2}^{2} x_{3}+x_{1} x_{2}^{2}+x_{1} x_{3}^{2}+x_{2} x_{3}^{2}+2 x_{1} x_{2} x_{3}
$$

Schur functions

Associate a polynomial to $\operatorname{SSYT}(\lambda)$.

$$
s_{(21)}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2} x_{2}+x_{1}^{2} x_{3}+x_{2}^{2} x_{3}+x_{1} x_{2}^{2}+x_{1} x_{3}^{2}+x_{2} x_{3}^{2}+2 x_{1} x_{2} x_{3}
$$

Definition

For λ a partition

$$
s_{\lambda}=\sum_{T \in \mathrm{SSYT}} x^{T} \text { for } x^{T}=\prod_{i \in T} x_{i}
$$

Schur functions

Associate a polynomial to $\operatorname{SSYT}(\lambda)$.

$$
s_{(21)}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2} x_{2}+x_{1}^{2} x_{3}+x_{2}^{2} x_{3}+x_{1} x_{2}^{2}+x_{1} x_{3}^{2}+x_{2} x_{3}^{2}+2 x_{1} x_{2} x_{3}
$$

Definition

For λ a partition

$$
s_{\lambda}=\sum_{T \in \mathrm{SSYT}} x^{T} \text { for } x^{T}=\prod_{i \in T} x_{i}
$$

- s_{λ} is a symmetric function

Schur functions

Associate a polynomial to $\operatorname{SSYT}(\lambda)$.

$$
s_{(21)}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2} x_{2}+x_{1}^{2} x_{3}+x_{2}^{2} x_{3}+x_{1} x_{2}^{2}+x_{1} x_{3}^{2}+x_{2} x_{3}^{2}+2 x_{1} x_{2} x_{3}
$$

Definition

For λ a partition

$$
s_{\lambda}=\sum_{T \in \mathrm{SSYT}} x^{T} \text { for } x^{T}=\prod_{i \in T} x_{i}
$$

- s_{λ} is a symmetric function
- Schur functions form a basis for $\Lambda_{\mathbb{Q}}$

Why Schur functions?

Harmonic polynomials

$M=$ polynomials killed by all symmetric differential operators.

Why Schur functions?

Harmonic polynomials

$M=$ polynomials killed by all symmetric differential operators.
Explicitly, for

$$
\Delta=\operatorname{det}\left|\begin{array}{lll}
x_{1}^{2} & x_{1} & 1 \\
x_{2}^{2} & x_{2} & 1 \\
x_{3}^{2} & x_{3} & 1
\end{array}\right|=x_{1}^{2}\left(x_{2}-x_{3}\right)-x_{2}^{2}\left(x_{1}-x_{3}\right)+x_{3}^{2}\left(x_{1}-x_{2}\right)
$$

Why Schur functions?

Harmonic polynomials

$M=$ polynomials killed by all symmetric differential operators.
Explicitly, for

$$
\Delta=\operatorname{det}\left|\begin{array}{lll}
x_{1}^{2} & x_{1} & 1 \\
x_{2}^{2} & x_{2} & 1 \\
x_{3}^{2} & x_{3} & 1
\end{array}\right|=x_{1}^{2}\left(x_{2}-x_{3}\right)-x_{2}^{2}\left(x_{1}-x_{3}\right)+x_{3}^{2}\left(x_{1}-x_{2}\right)
$$

M is the vector space given by

Why Schur functions?

Harmonic polynomials

$M=$ polynomials killed by all symmetric differential operators.
Explicitly, for

$$
\Delta=\operatorname{det}\left|\begin{array}{lll}
x_{1}^{2} & x_{1} & 1 \\
x_{2}^{2} & x_{2} & 1 \\
x_{3}^{2} & x_{3} & 1
\end{array}\right|=x_{1}^{2}\left(x_{2}-x_{3}\right)-x_{2}^{2}\left(x_{1}-x_{3}\right)+x_{3}^{2}\left(x_{1}-x_{2}\right)
$$

M is the vector space given by

$$
\begin{aligned}
M= & \operatorname{sp}\left\{\left(\partial_{x_{1}}^{a} \partial_{x_{2}}^{b} \partial_{x_{3}}^{c}\right) \Delta \mid a, b, c \geq 0\right\} \\
= & \operatorname{sp}\left\{\Delta, 2 x_{1}\left(x_{2}-x_{3}\right)-x_{2}^{2}+x_{3}^{2}, 2 x_{2}\left(x_{3}-x_{1}\right)-x_{3}^{2}+x_{1}^{2}\right. \\
& \left.x_{3}-x_{1}, x_{2}-x_{3}, 1\right\}
\end{aligned}
$$

Harmonic polynomials

(1) S_{3} action on M fixes vector subspaces!

$$
\operatorname{sp}\left\{\Delta, 2 x_{1}\left(x_{2}-x_{3}\right)-x_{2}^{2}+x_{3}^{2}, 2 x_{2}\left(x_{3}-x_{1}\right)-x_{3}^{2}+x_{1}^{2}, x_{3}-x_{1}, x_{2}-x_{3}, 1\right\}
$$

Harmonic polynomials

(1) S_{3} action on M fixes vector subspaces!

$$
\operatorname{sp}\left\{\Delta, 2 x_{1}\left(x_{2}-x_{3}\right)-x_{2}^{2}+x_{3}^{2}, 2 x_{2}\left(x_{3}-x_{1}\right)-x_{3}^{2}+x_{1}^{2}, x_{3}-x_{1}, x_{2}-x_{3}, 1\right\}
$$

(2) Break M up into smallest S_{n} fixed subspaces

Harmonic polynomials

(1) S_{3} action on M fixes vector subspaces!

$$
\operatorname{sp}\left\{\Delta, 2 x_{1}\left(x_{2}-x_{3}\right)-x_{2}^{2}+x_{3}^{2}, 2 x_{2}\left(x_{3}-x_{1}\right)-x_{3}^{2}+x_{1}^{2}, x_{3}-x_{1}, x_{2}-x_{3}, 1\right\}
$$

(2) Break M up into smallest S_{n} fixed subspaces

Harmonic polynomials

(1) S_{3} action on M fixes vector subspaces!

$$
\operatorname{sp}\left\{\Delta, 2 x_{1}\left(x_{2}-x_{3}\right)-x_{2}^{2}+x_{3}^{2}, 2 x_{2}\left(x_{3}-x_{1}\right)-x_{3}^{2}+x_{1}^{2}, x_{3}-x_{1}, x_{2}-x_{3}, 1\right\}
$$

(2) Break M up into smallest S_{n} fixed subspaces

(3) How many times does an S_{n} fixed subspace occur?

Harmonic polynomials

(1) S_{3} action on M fixes vector subspaces!

$$
\operatorname{sp}\left\{\Delta, 2 x_{1}\left(x_{2}-x_{3}\right)-x_{2}^{2}+x_{3}^{2}, 2 x_{2}\left(x_{3}-x_{1}\right)-x_{3}^{2}+x_{1}^{2}, x_{3}-x_{1}, x_{2}-x_{3}, 1\right\}
$$

(2) Break M up into smallest S_{n} fixed subspaces

(3) How many times does an S_{n} fixed subspace occur? Frobenius:

Harmonic polynomials

(1) S_{3} action on M fixes vector subspaces!

$$
\operatorname{sp}\left\{\Delta, 2 x_{1}\left(x_{2}-x_{3}\right)-x_{2}^{2}+x_{3}^{2}, 2 x_{2}\left(x_{3}-x_{1}\right)-x_{3}^{2}+x_{1}^{2}, x_{3}-x_{1}, x_{2}-x_{3}, 1\right\}
$$

(2) Break M up into smallest S_{n} fixed subspaces

(3) How many times does an S_{n} fixed subspace occur? Frobenius:

$$
e_{1}^{3}=\left(x_{1}+x_{2}+x_{3}\right)^{3}=s_{\square}+s_{\square}+s_{\square}+s_{\square \square}
$$

Harmonic polynomials

(1) S_{3} action on M fixes vector subspaces!

$$
\operatorname{sp}\left\{\Delta, 2 x_{1}\left(x_{2}-x_{3}\right)-x_{2}^{2}+x_{3}^{2}, 2 x_{2}\left(x_{3}-x_{1}\right)-x_{3}^{2}+x_{1}^{2}, x_{3}-x_{1}, x_{2}-x_{3}, 1\right\}
$$

(2) Break M up into smallest S_{n} fixed subspaces

(3) How many times does an S_{n} fixed subspace occur? Frobenius:

$$
e_{1}^{3}=\left(x_{1}+x_{2}+x_{3}\right)^{3}=s_{\square}+s_{\square}+s_{\square}+s_{\square \square}
$$

Schur basis expansion counts multiplicity of irreducible S_{n} fixed subspaces!

Schur positivity

Upshot

Schur positivity

Upshot

(1) Schur functions $\leftrightarrow S_{n}$-invariant subspaces.

Schur positivity

Upshot

(1) Schur functions $\leftrightarrow S_{n}$-invariant subspaces.
(2) Via Frobenius characteristic map, questions about S_{n}-action on vector spaces get translated to questions about Schur expansion coefficients in symmetric functions.

Schur positivity

Interesting algebraic combinatorics questions

Schur positivity

Interesting algebraic combinatorics questions

(1) Is a symmetric function Schur positive?

Schur positivity

Interesting algebraic combinatorics questions

(1) Is a symmetric function Schur positive?
(2) What do the Schur expansion coefficients count?

Getting more information

Getting more information

Break M up into smallest S_{n} fixed subspaces

Getting more information

Break M up into smallest S_{n} fixed subspaces

Solution: minimal S_{n}-fixed subspace of degree $d \mapsto q^{d} s_{\lambda}$ (graded Frobenius)

$$
? ?=q^{3} s q^{2} s q^{2}{ }^{+}{ }^{s} \square \square^{+s} \square \square \square
$$

Getting more information

Break M up into smallest S_{n} fixed subspaces

Solution: minimal S_{n}-fixed subspace of degree $d \mapsto q^{d} s_{\lambda}$ (graded Frobenius)

$$
? ?=q^{3} s q^{2} s q^{2}{ }^{+}{ }^{s} \square \square^{+s} \square \square \square
$$

An example of bi-degree

Capturing even more information...

An example of bi-degree

Capturing even more information...

- $\mathbb{Q}\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right]$ satisfying $\sigma\left(x_{i}\right)=x_{\sigma(i)}, \sigma\left(y_{j}\right)=y_{\sigma(j)}$.

An example of bi-degree

Capturing even more information...

- $\mathbb{Q}\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right]$ satisfying $\sigma\left(x_{i}\right)=x_{\sigma(i)}, \sigma\left(y_{j}\right)=y_{\sigma(j)}$.
- Garsia-Haiman: $M_{\mu}=$ span of partial derivatives of Δ_{μ}

An example of bi-degree

Capturing even more information...

- $\mathbb{Q}\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right]$ satisfying $\sigma\left(x_{i}\right)=x_{\sigma(i)}, \sigma\left(y_{j}\right)=y_{\sigma(j)}$.
- Garsia-Haiman: $M_{\mu}=$ span of partial derivatives of Δ_{μ}

$$
\Delta_{\square}=\operatorname{det}\left|\begin{array}{lll}
1 & y_{1} & x_{1} \\
1 & y_{2} & x_{2} \\
1 & y_{3} & x_{3}
\end{array}\right|=x_{3} y_{2}-y_{3} x_{2}-y_{1} x_{3}+y_{1} x_{2}+y_{3} x_{1}-y_{2} x_{1}
$$

An example of bi-degree

Capturing even more information...

- $\mathbb{Q}\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right]$ satisfying $\sigma\left(x_{i}\right)=x_{\sigma(i)}, \sigma\left(y_{j}\right)=y_{\sigma(j)}$.
- Garsia-Haiman: $M_{\mu}=$ span of partial derivatives of Δ_{μ}

$$
\begin{gathered}
\Delta_{\square}=\operatorname{det}\left|\begin{array}{lll}
1 & y_{1} & x_{1} \\
1 & y_{2} & x_{2} \\
1 & y_{3} & x_{3}
\end{array}\right|=x_{3} y_{2}-y_{3} x_{2}-y_{1} x_{3}+y_{1} x_{2}+y_{3} x_{1}-y_{2} x_{1} \\
M_{2,1}=\underbrace{\operatorname{sp}\left\{\Delta_{2,1}\right\}}_{\operatorname{deg}=(1,1)} \oplus \underbrace{\operatorname{sp}\left\{y_{3}-y_{1}, y_{1}-y_{2}\right\}}_{\operatorname{deg}=(0,1)} \oplus \underbrace{\operatorname{sp}\left\{x_{3}-x_{1}, x_{1}-x_{2}\right\}}_{\operatorname{deg}=(1,0)} \oplus \underbrace{\operatorname{sp}\{1\}}_{\operatorname{deg}=(0,0)}
\end{gathered}
$$

An example of bi-degree

Capturing even more information...

- $\mathbb{Q}\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right]$ satisfying $\sigma\left(x_{i}\right)=x_{\sigma(i)}, \sigma\left(y_{j}\right)=y_{\sigma(j)}$.
- Garsia-Haiman: $M_{\mu}=$ span of partial derivatives of Δ_{μ}

$$
\begin{gathered}
\Delta_{\square}^{\square}=\operatorname{det}\left|\begin{array}{lll}
1 & y_{1} & x_{1} \\
1 & y_{2} & x_{2} \\
1 & y_{3} & x_{3}
\end{array}\right|=x_{3} y_{2}-y_{3} x_{2}-y_{1} x_{3}+y_{1} x_{2}+y_{3} x_{1}-y_{2} x_{1} \\
M_{2,1}=\underbrace{\operatorname{sp}\left\{\Delta_{2,1}\right\}}_{\operatorname{deg}=(1,1)} \oplus \underbrace{\operatorname{sp}\left\{y_{3}-y_{1}, y_{1}-y_{2}\right\}}_{\operatorname{deg}=(0,1)} \oplus \underbrace{\operatorname{sp}\left\{x_{3}-x_{1}, x_{1}-x_{2}\right\}}_{\operatorname{deg}=(1,0)} \oplus \underbrace{\operatorname{sp}\{1\}}_{\operatorname{deg}=(0,0)}
\end{gathered}
$$

Minimal S_{n}-invariant subspace with bidegree $(a, b) \mapsto q^{a} t^{b} s_{\lambda}$

An example of bi-degree

Capturing even more information...

- $\mathbb{Q}\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right]$ satisfying $\sigma\left(x_{i}\right)=x_{\sigma(i)}, \sigma\left(y_{j}\right)=y_{\sigma(j)}$.
- Garsia-Haiman: $M_{\mu}=$ span of partial derivatives of Δ_{μ}

$$
\begin{gathered}
\Delta_{\square}=\operatorname{det}\left|\begin{array}{lll}
1 & y_{1} & x_{1} \\
1 & y_{2} & x_{2} \\
1 & y_{3} & x_{3}
\end{array}\right|=x_{3} y_{2}-y_{3} x_{2}-y_{1} x_{3}+y_{1} x_{2}+y_{3} x_{1}-y_{2} x_{1} \\
M_{2,1}=\underbrace{\operatorname{sp}\left\{\Delta_{2,1}\right\}}_{\operatorname{deg}=(1,1)} \oplus \underbrace{\operatorname{sp}\left\{y_{3}-y_{1}, y_{1}-y_{2}\right\}}_{\operatorname{deg}=(0,1)} \oplus \underbrace{\operatorname{sp}\left\{x_{3}-x_{1}, x_{1}-x_{2}\right\}}_{\operatorname{deg}=(1,0)} \oplus \underbrace{\operatorname{sp}\{1\}}_{\operatorname{deg}=(0,0)}
\end{gathered}
$$

Minimal S_{n}-invariant subspace with bidegree $(a, b) \mapsto q^{a} t^{b} s_{\lambda}$

$$
\tilde{H}_{\mu}=q t s_{\square}+t s \square+q s \square+s \square \square \square
$$

Diagonal harmonics

- Define ∇ by $\nabla \tilde{H}_{\mu}=B_{\mu}(q, t) \tilde{H}_{\mu}$ for eigenvalue $B_{\mu}(q, t) \in \mathbb{Q}[q, t]$.

$$
\nabla \tilde{H}_{2,1}=q t \tilde{H}_{2,1}
$$

Diagonal harmonics

- Define ∇ by $\nabla \tilde{H}_{\mu}=B_{\mu}(q, t) \tilde{H}_{\mu}$ for eigenvalue $B_{\mu}(q, t) \in \mathbb{Q}[q, t]$.

$$
\nabla \tilde{H}_{2,1}=q t \tilde{H}_{2,1}
$$

- $\hat{M}=\left\{f \in \mathbb{Q}\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right] \mid \sum_{1 \leq j \leq n} \partial_{x_{j}}^{a} \partial_{y_{j}}^{b} f(x, y)=0\right\}$.

Diagonal harmonics

- Define ∇ by $\nabla \tilde{H}_{\mu}=B_{\mu}(q, t) \tilde{H}_{\mu}$ for eigenvalue $B_{\mu}(q, t) \in \mathbb{Q}[q, t]$.

$$
\nabla \tilde{H}_{2,1}=q t \tilde{H}_{2,1}
$$

- $\hat{M}=\left\{f \in \mathbb{Q}\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right] \mid \sum_{1 \leq j \leq n} \partial_{x_{j}}^{a} \partial_{y_{j}}^{b} f(x, y)=0\right\}$.
- $\hat{M} \rightarrow \nabla e_{n}$

$$
\left.\nabla e_{3}=\left(q^{3}+q^{2} t+q t^{2}+t^{3}+q t\right) s \Xi^{+\left(q^{2}+q t+t^{2}+q+t\right) s}\right)^{+s_{\square}}
$$

Diagonal harmonics

- Define ∇ by $\nabla \tilde{H}_{\mu}=B_{\mu}(q, t) \tilde{H}_{\mu}$ for eigenvalue $B_{\mu}(q, t) \in \mathbb{Q}[q, t]$.

$$
\nabla \tilde{H}_{2,1}=q t \tilde{H}_{2,1}
$$

- $\hat{M}=\left\{f \in \mathbb{Q}\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right] \mid \sum_{1 \leq j \leq n} \partial_{x_{j}}^{a} \partial_{y_{j}}^{b} f(x, y)=0\right\}$.
- $\hat{M} \rightarrow \nabla e_{n}$

$$
\left.\nabla e_{3}=\left(q^{3}+q^{2} t+q t^{2}+t^{3}+q t\right) s \varepsilon^{+\left(q^{2}+q t+t^{2}+q+t\right) s}\right)^{+s}
$$

Open question

Diagonal harmonics

- Define ∇ by $\nabla \tilde{H}_{\mu}=B_{\mu}(q, t) \tilde{H}_{\mu}$ for eigenvalue $B_{\mu}(q, t) \in \mathbb{Q}[q, t]$.

$$
\nabla \tilde{H}_{2,1}=q t \tilde{H}_{2,1}
$$

- $\hat{M}=\left\{f \in \mathbb{Q}\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right] \mid \sum_{1 \leq j \leq n} \partial_{x_{j}}^{a} \partial_{y_{j}}^{b} f(x, y)=0\right\}$.
- $\hat{M} \rightarrow \nabla e_{n}$

$$
\nabla e_{3}=\left(q^{3}+q^{2} t+q t^{2}+t^{3}+q t\right) s_{\square}+\left(q^{2}+q t+t^{2}+q+t\right) s_{\square}+s_{\square \square}
$$

Open question

What is the Schur expansion of ∇e_{n} ?

Diagonal harmonics

- Define ∇ by $\nabla \tilde{H}_{\mu}=B_{\mu}(q, t) \tilde{H}_{\mu}$ for eigenvalue $B_{\mu}(q, t) \in \mathbb{Q}[q, t]$.

$$
\nabla \tilde{H}_{2,1}=q t \tilde{H}_{2,1}
$$

- $\hat{M}=\left\{f \in \mathbb{Q}\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right] \mid \sum_{1 \leq j \leq n} \partial_{x_{j}}^{a} \partial_{y_{j}}^{b} f(x, y)=0\right\}$.
- $\hat{M} \rightarrow \nabla e_{n}$

$$
\nabla e_{3}=\left(q^{3}+q^{2} t+q t^{2}+t^{3}+q t\right)_{\square}+\left(q^{2}+q t+t^{2}+q+t\right)_{\square}+s_{\square \square}
$$

Open question

What is the Schur expansion of ∇e_{n} ?
Recover earlier story by taking $t=0$ and $y_{i}=1$ for all y_{i} 's.

