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Polynomials

f ∈ Q[x1, . . . , xn] multivariate polynomial

(
1 2 3
3 2 1

)
(5x21 + 5x22 + 8x23 ) = 8x21 + 5x22 + 5x23

σ ∈ Sn acts as σ.f (x1, x2, . . . , xn) = f (xσ(1), xσ(2), . . . , xσ(n))
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Symmetric Polynomials

Polynomials f ∈ Q[x1, . . . , xn] satisfying σ.f = f ?

Symmetric polynomials (n = 3)

e1 = x1 + x2 + x3 =h1

e2 = x1x2 + x1x3 + x2x3 h2 = x21 + x1x2 + x1x3 + x22 + x2x3 + x23

e3 = x1x2x3 h3 = x31 + x21x2 + x21x3 + x1x
2
2 + · · ·

{f ∈ Q[x1, . . . , xn] | σ.f = f ∀σ ∈ Sn} forms a vector space, ΛQ.
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Combinatorics of Symmetric Polynomials

Generators

er =
∑

i1<i2<···<ir

xi1xi2 · · · xir or hr =
∑

i1≤i2≤···≤ir

xi1xi2 · · · xir

Symmetric functions are polynomials in the e1, e2, . . ., or in the h1, h2, . . .

3h2h
2
1 − h22 + 6h3h1 = 3h(211) − h(22) + 6h(31)

Basis of ΛQ?
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Partitions

Definition

n ∈ Z>0, a partition of n is λ = (λ1 ≥ λ2 ≥ · · · ≥ λℓ > 0) such that
λ1 + λ2 + · · ·+ λℓ = n.

5 → 2 + 2 + 1 →

4 + 1 → 2 + 1 + 1 + 1 →

3 + 2 → 1 + 1 + 1 + 1 + 1 →

3 + 1 + 1 →
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Tableaux

Definition

Filling of partition diagram of λ with numbers such that

1 strictly increasing down columns

2 weakly increasing along rows

Collection is called SSYT(λ).

For λ = (2, 1),

1 1
2 ,

1 1
3 ,

2 2
3 ,

1 2
2 ,

1 3
3 ,

2 3
3 ,

1 3
2 ,

1 2
3
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Schur functions

Associate a polynomial to SSYT(λ).

1 1
2 ,

1 1
3 ,

2 2
3 ,

1 2
2 ,

1 3
3 ,

2 3
3 ,

1 3
2 ,

1 2
3

Weight: (2,1,0) (2,0,1) (0,2,1) (1,2,0) (1,0,2) (0,1,2) (1,1,1) (1,1,1)

s(21)(x1, x2, x3) = x21x2 + x21x3 + x22x3 + x1x
2
2 + x1x

2
3 + x2x

2
3 + 2x1x2x3

Definition

For λ a partition

sλ =
∑

T∈SSYT(λ)

xT for xT =
∏
i∈T

xi

sλ is a symmetric function

Schur functions form a basis for ΛQ
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Why Schur functions?

Harmonic polynomials

M = polynomials killed by all symmetric differential operators.

Explicitly, for

∆ = det

∣∣∣∣∣∣
x21 x1 1
x22 x2 1
x23 x3 1

∣∣∣∣∣∣ = x21 (x2 − x3)− x22 (x1 − x3) + x23 (x1 − x2)

M is the vector space given by

M =sp
{(

∂a
x1∂

b
x2∂

c
x3

)
∆ | a, b, c ≥ 0

}
=sp{∆, 2x1(x2 − x3)− x22 + x23 , 2x2(x3 − x1)− x23 + x21 ,

x3 − x1, x2 − x3, 1}
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Harmonic polynomials

1 S3 action on M fixes vector subspaces!

sp{∆, 2x1(x2−x3)−x22 +x23 , 2x2(x3−x1)−x23 +x21 , x3−x1, x2−x3, 1}

2 Break M up into smallest Sn fixed subspaces

sp{∆}︸ ︷︷ ︸⊕ sp{2x1(x2−x3)−x22+x23 , 2x2(x3−x1)−x23+x21}︸ ︷︷ ︸⊕ sp{x3−x1, x2−x3}︸ ︷︷ ︸⊕ sp{1}︸ ︷︷ ︸

3 How many times does an Sn fixed subspace occur? Frobenius:

e31 = (x1 + x2 + x3)
3 = s + s + s + s

Schur basis expansion counts multiplicity of irreducible Sn fixed subspaces!

George H. Seelinger (UMich) Dens, Nests, and Catalanimals 17 March 2023 9 / 47



Harmonic polynomials

1 S3 action on M fixes vector subspaces!

sp{∆, 2x1(x2−x3)−x22 +x23 , 2x2(x3−x1)−x23 +x21 , x3−x1, x2−x3, 1}

2 Break M up into smallest Sn fixed subspaces

sp{∆}︸ ︷︷ ︸⊕ sp{2x1(x2−x3)−x22+x23 , 2x2(x3−x1)−x23+x21}︸ ︷︷ ︸⊕ sp{x3−x1, x2−x3}︸ ︷︷ ︸⊕ sp{1}︸ ︷︷ ︸

3 How many times does an Sn fixed subspace occur? Frobenius:

e31 = (x1 + x2 + x3)
3 = s + s + s + s

Schur basis expansion counts multiplicity of irreducible Sn fixed subspaces!

George H. Seelinger (UMich) Dens, Nests, and Catalanimals 17 March 2023 9 / 47



Harmonic polynomials

1 S3 action on M fixes vector subspaces!

sp{∆, 2x1(x2−x3)−x22 +x23 , 2x2(x3−x1)−x23 +x21 , x3−x1, x2−x3, 1}

2 Break M up into smallest Sn fixed subspaces

sp{∆}︸ ︷︷ ︸⊕ sp{2x1(x2−x3)−x22+x23 , 2x2(x3−x1)−x23+x21}︸ ︷︷ ︸⊕ sp{x3−x1, x2−x3}︸ ︷︷ ︸⊕ sp{1}︸ ︷︷ ︸

3 How many times does an Sn fixed subspace occur? Frobenius:

e31 = (x1 + x2 + x3)
3 = s + s + s + s

Schur basis expansion counts multiplicity of irreducible Sn fixed subspaces!

George H. Seelinger (UMich) Dens, Nests, and Catalanimals 17 March 2023 9 / 47



Harmonic polynomials

1 S3 action on M fixes vector subspaces!

sp{∆, 2x1(x2−x3)−x22 +x23 , 2x2(x3−x1)−x23 +x21 , x3−x1, x2−x3, 1}

2 Break M up into smallest Sn fixed subspaces

sp{∆}︸ ︷︷ ︸⊕ sp{2x1(x2−x3)−x22+x23 , 2x2(x3−x1)−x23+x21}︸ ︷︷ ︸⊕ sp{x3−x1, x2−x3}︸ ︷︷ ︸⊕ sp{1}︸ ︷︷ ︸

3 How many times does an Sn fixed subspace occur?

Frobenius:

e31 = (x1 + x2 + x3)
3 = s + s + s + s

Schur basis expansion counts multiplicity of irreducible Sn fixed subspaces!

George H. Seelinger (UMich) Dens, Nests, and Catalanimals 17 March 2023 9 / 47



Harmonic polynomials

1 S3 action on M fixes vector subspaces!

sp{∆, 2x1(x2−x3)−x22 +x23 , 2x2(x3−x1)−x23 +x21 , x3−x1, x2−x3, 1}

2 Break M up into smallest Sn fixed subspaces

sp{∆}︸ ︷︷ ︸⊕ sp{2x1(x2−x3)−x22+x23 , 2x2(x3−x1)−x23+x21}︸ ︷︷ ︸⊕ sp{x3−x1, x2−x3}︸ ︷︷ ︸⊕ sp{1}︸ ︷︷ ︸

3 How many times does an Sn fixed subspace occur? Frobenius:

e31 = (x1 + x2 + x3)
3 = s + s + s + s

Schur basis expansion counts multiplicity of irreducible Sn fixed subspaces!

George H. Seelinger (UMich) Dens, Nests, and Catalanimals 17 March 2023 9 / 47



Harmonic polynomials

1 S3 action on M fixes vector subspaces!

sp{∆, 2x1(x2−x3)−x22 +x23 , 2x2(x3−x1)−x23 +x21 , x3−x1, x2−x3, 1}

2 Break M up into smallest Sn fixed subspaces

sp{∆}︸ ︷︷ ︸⊕ sp{2x1(x2−x3)−x22+x23 , 2x2(x3−x1)−x23+x21}︸ ︷︷ ︸⊕ sp{x3−x1, x2−x3}︸ ︷︷ ︸⊕ sp{1}︸ ︷︷ ︸

3 How many times does an Sn fixed subspace occur? Frobenius:

e31 = (x1 + x2 + x3)
3 = s + s + s + s

Schur basis expansion counts multiplicity of irreducible Sn fixed subspaces!

George H. Seelinger (UMich) Dens, Nests, and Catalanimals 17 March 2023 9 / 47



Harmonic polynomials

1 S3 action on M fixes vector subspaces!

sp{∆, 2x1(x2−x3)−x22 +x23 , 2x2(x3−x1)−x23 +x21 , x3−x1, x2−x3, 1}

2 Break M up into smallest Sn fixed subspaces

sp{∆}︸ ︷︷ ︸⊕ sp{2x1(x2−x3)−x22+x23 , 2x2(x3−x1)−x23+x21}︸ ︷︷ ︸⊕ sp{x3−x1, x2−x3}︸ ︷︷ ︸⊕ sp{1}︸ ︷︷ ︸

3 How many times does an Sn fixed subspace occur? Frobenius:

e31 = (x1 + x2 + x3)
3 = s + s + s + s

Schur basis expansion counts multiplicity of irreducible Sn fixed subspaces!
George H. Seelinger (UMich) Dens, Nests, and Catalanimals 17 March 2023 9 / 47



Recap so far

Combinatorics: Schur functions are weight generating functions of
semistandard tableaux.

Algebra: Schur functions count multiplicity of irreducible Sn-fixed
vector subspaces (representations).

Upshot

Via Frobenius characteristic map, questions about Sn-representations get
translated to questions about Schur expansion coefficients in symmetric
functions.

Does a symmetric function expand into Schur basis with nonnegative
coefficients? Is there a combinatorial description for coefficients?
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Getting more information

Break M up into smallest Sn fixed subspaces

sp{∆}︸ ︷︷ ︸⊕ sp{2x1(x2−x3)−x22+x23 , 2x2(x3−x1)−x23+x21}︸ ︷︷ ︸
deg=2

⊕ sp{x3−x1, x2−x3}︸ ︷︷ ︸
deg=1

⊕ sp{1}︸ ︷︷ ︸

Solution: minimal Sn-fixed subspace of degree d 7→ qdsλ (graded
Frobenius)

?? = q3s + q2s + qs + s

Answer: “Hall-Littlewood polynomial” H (X ; q).
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A Problem

In 1988, Macdonald introduces a family of symmetric polynomials
with coefficients in Q(q, t) generalizing Hall-Littlewood polynomials.

Garsia modifies these polynomials so

H̃λ(X ; q, t) =
∑
µ

K̃ (q, t)sµ conjecturally satisfies K̃ (q, t) ∈ N[q, t]

H̃λ(X ; 1, 1) = e
|λ|
1 .

Does there exist a family of Sn-representations whose (bigraded)
Frobenius characteristics equal H̃λ(X ; q, t)?
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Garsia-Haiman modules

Q[x1, . . . , xn, y1, . . . , yn] satisfying σ(xi ) = xσ(i), σ(yj) = yσ(j).

Garsia-Haiman (1993): Mµ = span of partial derivatives of

∆µ = det(i ,j)∈µ,k∈[n](x
i−1
k y j−1

k )

∆ = det

∣∣∣∣∣∣
1 y1 x1
1 y2 x2
1 y3 x3

∣∣∣∣∣∣ = x3y2 − y3x2 − y1x3 + y1x2 + y3x1 − y2x1

M2,1 = sp{∆2,1}︸ ︷︷ ︸
deg=(1,1)

⊕ sp{y3 − y1, y1 − y2}︸ ︷︷ ︸
deg=(0,1)

⊕ sp{x3 − x1, x1 − x2}︸ ︷︷ ︸
deg=(1,0)

⊕ sp{1}︸ ︷︷ ︸
deg=(0,0)

Irreducible Sn-representation with bidegree (a, b) 7→ qatbsλ

H̃ = qts + ts + qs + s
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Garsia-Haiman modules

Theorem (Haiman, 2001)

The Garsia-Haiman module Mλ has bigraded Frobenius characteristic
given by H̃λ(X ; q, t)

Proved via geometric connection to the Hilbert Scheme Hilbn(C2).

Corollary

H̃λ(X ; q, t) =
∑

µ K̃λµ(q, t)sµ satisfies K̃λµ(q, t) ∈ N[q, t].

No combinatorial description of K̃λµ(q, t). (Still open!)
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Garsia-Haiman modules

Observation

All of these Garsia-Haiman modules are contained in the module of
diagonal harmonics:

DHn = sp{f ∈ C[x1, . . . , xn, y1, . . . , yn] |

 n∑
j=1

∂r
xj
∂s
yj

 f = 0,∀r + s > 0}

Question

What symmetric function is the bigraded Frobenius characteristic of DHn?
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∇en

Frobenius characteristic of DH3

=
t3H̃1,1,1

−qt2+t3+q2−qt
− (q2t+qt2+qt)H̃2,1

−q2t2+q3+t3−qt
− q3H̃3

−q3+q2t+qt−t2

Compare to

e3 =
H̃1,1,1

−qt2+t3+q2−qt
− (q+t+1)H̃2,1

−q2t2+q3+t3−qt
− H̃3

−q3+q2t+qt−t2

Operator ∇

∇H̃λ(X ; q, t) = qn(λ)tn(λ
′)H̃λ(X ; q, t)

Theorem (Haiman, 2002)

The bigraded Frobenius characteristic of DHn is given by ∇en.
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A Combinatorial Connection: Shuffle Theorem

Theorem (Carlsson-Mellit, 2018)

∇ek(X ) =
∑
λ

tarea(λ)qdinv(λ)ωGν(λ)(X ; q−1)

Conjectured by (Haiman-Haglund-Loehr-Remmel-Ulyanov, 2002).

Combinatorial RHS: Combinatorics of Dyck paths.

Summation over all k-by-k Dyck paths.

area(λ) and dinv(λ) statistics of Dyck paths.

Gν(λ)(X ; q) a symmetric LLT polynomial indexed by a tuple of offset
rows.
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Dyck paths

Dyck paths

A Dyck path λ is a south-east lattice path lying below the line segment
from (0, k) to (k , 0).

δ
λ

area(λ) = number of squares above λ but below the path δ of
alternating S-E steps.
E.g., above area(λ) = 10.
Catalan-number many Dyck paths for fixed k . (1,2,5,14,42,. . . )
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dinv

dinv(λ) =# of balanced hooks in diagram below λ.

a

ℓ

Balanced hook is given by a cell below λ satisfying

ℓ

a+ 1
< 1− ϵ <

ℓ+ 1

a
, ϵ small.
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LLT Polynomials

Defined in general for a tuple of skew shapes ν = (ν(1), . . . , ν(r))

Gν(X ; q) is a symmetric function

Gν(X ; 1) = sν(1) · · · sν(r)
Gν were originally defined by Lascoux, Leclerc, and Thibon to explore
connections to Fock space representations of Uq(ŝlr )

When ν(i) are partitions, the Schur-expansion coefficients are
essentially parabolic Kazdhan-Luzstig polynomials.

Gν is Schur-positive for any tuple of skew shapes ν
[Grojnowski-Haiman, 2007].

George H. Seelinger (UMich) Dens, Nests, and Catalanimals 17 March 2023 20 / 47



LLT Polynomials

Defined in general for a tuple of skew shapes ν = (ν(1), . . . , ν(r))

Gν(X ; q) is a symmetric function

Gν(X ; 1) = sν(1) · · · sν(r)
Gν were originally defined by Lascoux, Leclerc, and Thibon to explore
connections to Fock space representations of Uq(ŝlr )
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LLT Polynomials

Gν(λ)(X ; q) is an LLT polynomial for a tuple of rows,

ν(λ) = (ν(1), . . . , ν(r)).

→
ν(7) =
ν(6) =
ν(5) =
ν(4) =
ν(3) =
ν(2) =
ν(1) =
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LLT Polynomials

Gν(X ; q) =
∑

T∈SSYT(ν)

qi(T )xT

for T a weakly increasing filling of rows and i(T ) the number of attacking
inversions:

T =

1 2 3 3 5

2 4 4 7 8 9 9

1 1 6 7 7 7 → qi(T )xT = q18x31x
2
2x

2
3x

2
4x5x6x

4
7x8x

2
9

G (x1, x2; q) =x31 + x21x2 + x1x
2
2 + x32 + qx21x2 + qx1x

2
2

1 1
1

1 2
1

1 2
2

2 2
2

1 1
2

2 2
1

=s3 + qs2,1
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Example ∇e3

λ qdinv(λ)tarea(λ) qdinv(λ)tarea(λ)Gν(λ)(X ; q−1)

q3 s3 + qs2,1 + q2s2,1 + q3s1,1,1

q2t qts2,1 + q2ts1,1,1

qt ts2,1 + qts1,1,1

qt2 t2s2,1 + qt2s1,1,1

t3 t3s1,1,1

Entire quantity is q, t-symmetric
Coefficient of s1,1,1 in sum is a “(q, t)-Catalan number”
(q3 + q2t + qt + qt2 + t3) .
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Generalizing Shuffle Theorem

When a problem is too difficult, try generalizing!

Algebraic Expression Combinatorial Expression

∇ek(X ) =
∑

q, t-weighted Dyck paths

Rational Shuffle Conjecture (F. Bergeron, Garsia, Sergel Leven, Xin,
2016) (Proved by Mellit, 2016)

For m, n coprime, the operator ek [−MXm,n] acting on Λ satisfies

ek [−MXm,n] · 1 =
∑

q, t-weighted (km, kn)-Dyck paths

•

•
δ
λ

(0, kn)

(km, 0)
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Welcome to the Zoo

The operators ek [−MXm,n] arise from an action of Schiffmann
algebra E on Λ.

E contains subalgebra Λ(Xm,n) ∼= Λ for each coprime pair (m, n) ∈ Z2.

In general, E-action can be a pain to compute in a nice way, but
sometimes it is nice!
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Welcome to the Zoo: Catalanimals

Fix l ∈ Z>0. Let R+ = {(i , j) | 1 ≤ i < j ≤ l} .

Definition

For subsets Rq,Rt ,Rqt ⊆ R+ and γ ∈ Zl , a Catalanimal
H = H(Rq,Rt ,Rqt , γ)(z1, . . . , zl ; q, t) is a symmetric rational function

∑
w∈Sl

w

(
zγ11 · · · zγll

∏
(i ,j)∈Rqt

(1− qtzi/zj)∏
(i ,j)∈R+

(1− zj/zi )
∏

(i ,j)∈Rq
(1− qzi/zj)

∏
(i ,j)∈Rt

(1− tzi/zj)

)

Can also be thought of as an infinite series of virtual GLl -characters.

We can take “polynomial part” (restrict to only polynomial
GLl -characters) to get a symmetric function.
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Welcome to the Zoo: Catalanimals

Visual representations of Catalanimals are less scary.

Assume Rqt ⊆ Rt ⊆ Rq ⊆ R+:

2

2

2

1

1

1

0

0

1

0

2

0

2

2

1

1

0

0

R+ \ Rq

Rq \ Rt

Rt \ Rqt

Rqt
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Tame and cuddly Catalanimals

Sometimes, there exists ξ ∈ E such that ξ · 1 = ω polX H.

(!!!)

When Rqt ⊆ [Rq,Rt ], then this happens. (Associated H is tame.)

When, H is (m, n)-cuddly (a set of inequalities on root sets and
weight), there exists an f ∈ Λ such that f [−MXm,n] · 1 = ω polX H
(up to q, t-monomial and sign).

In this case, we set cub(H) = f .

The cuddly conditions allow a nice coproduct formula for f [X + Y ] in
terms of cubs of “restrictions” of H.
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Cuddly Catalanimals with cub ek

H(R+,R+, [R+,R+], (1
k)) is (1, 1)-cuddly with cub ek .

More generally, if δ is the sequence of south step runs of highest path
under the line through (0, kn) to (km, 0), then
ek [−MXm,n] · 1 = H(R+,R+, [R+,R+], δ).

1
1
0
1
1
0
1
1
0
1
1
0
1
1
0
1
1
0

H

R+ \ Rq

Rq \ Rt

Rt \ Rqt

Rqt

δ = (1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0) and
e6[−MX 3,2] · 1 = ω polX H
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1, 1-Cuddly Catalanimals with cub sµ

Can construct root sets and weight from the content diagonals of µ.

µ = → + . . −
+ . −
+ . −

→ 1 0 1 0
2 1 0
2 2 1

.

2

2

2

1

1

1

0

0

1

0

H

R+ \ Rq

Rq \ Rt

Rt \ Rqt

Rqt

sµ[−MX 1,1] · 1 = ∇sµ = ω polX H (up to q, t-monomial)
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Dens and nests

Theorem (Blasiak-Haiman-Morse-Pun-S. (2021+))

For every partition µ and coprime positive integers m, n, we have

sµ[−MXm,n] · 1

= (−1)p(µ)(qt)p(µ)+m
∑h

i=1 (
γi
2 )
∑
π

tarea(π)qdinvp(π)ωGν(π)(X ; q−1)

Combinatorial RHS: Over all nests π in a den associated to µ and
m, n.

Conjectured by Loehr-Warrington (2008) when n = 1 with different
combinatorics (but bijectively related).
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Dens and nests

Theorem (Blasiak-Haiman-Morse-Pun-S. (2021+))
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= (−1)p(µ)(qt)p(µ)+m
∑h

i=1 (
γi
2 )
∑
π

tarea(π)qdinvp(π)ωGν(π)(X ; q−1)

µ =

p(µ) = number of boxes with positive content.

h = m(largest hook length in µ) = m(µ1 + ℓ(µ)− 1).
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∑h

i=1 (
γi
2 )
∑
π

tarea(π)qdinvp(π)ωGν(π)(X ; q−1)

µ =

γ(µ) is the tuple of the sizes of content diagonals.

µ = =⇒ γ = (1, 2, 3, 2, 1, 1).
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Dens and nests

For given partition λ

δi (λ) = χ(λ1 − 1− i is the content of the last box of some row of λ)

µ = 3
1
0

=⇒ δ(µ) = (1, 0, 1, 1, 0, 0, . . .)

ϵi (λ) = χ(i ≥ λ1)

µ = =⇒ ϵ(µ) = (0, 0, 0, 0, 1, 1, . . .)
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Dens and nests

To construct a (simplified) den,

1 Draw the line connecting (0, n
mh) and (h, 0)

2 Relationship between δ and ϵ tell us where to place a lattice point on
each vertical, (weakly) below the line.

3 If δi (µ) > ϵi (µ), lattice point on x = im is a source.

4 Similarly, δi (µ) < ϵi (µ) =⇒ point on x = im is a sink.

m = 2, n = 1

µ = (4, 3, 3, 3, 2)

source

sink
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Dens and nests

Number the sources left to right and the sinks right to left.

A nest is a collection of east end lattice paths (π(1), . . . , π(r)) that lie
weakly below the marked lattice points.

Each π(i) begins with a south step, starting at source i , and ends with
an east step into sink i .

Each π(i) is nested below π(i+1).

The interval of x-coordinates of π(i+1) is contained in the interval of
x-coordinates of π(i).
Top of a south run of π(i+1) strictly above the top of a south run of
π(i) on same vertical.
Bottom of a south run of π(i) strictly below the bottom of a south run
of π(i+1) on same vertical.

π

π′
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Dens and nests

Example of the “highest nest” π0

1

2

3

3

2

1

m = 2, n = 1

µ = (4, 3, 3, 3, 2)

source

sink
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Dens and nests

Example of another nest.

1

2

3

3

2

1

1 m = 2, n = 1

µ = (4, 3, 3, 3, 2)

source

sink
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Area

area(π) =
∑r

i=1 area(πi ) where area(πi ) = number of lattice squares
between πi and π0

i .

m = 2, n = 1
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Dens and nests

For p = n
m − ϵ ∈ R \Q and ϵ small, dinvp(π) = #{(P, i ,S , j)} where

P is a non-sink lattice point in πi

S is a south step in πj

P is strictly to the left of S
A line of slope −p passing through P passes through S .

S
P
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dinv

m = 2, n = 1

µ = (4, 3, 3, 3, 2)

source

sink

Contributes 3 to the dinv.
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Associating a tuple of skew partitions to a nest

Each vertical line x = i will give a skew partition.

South steps of each path will contribute a row.
Content determined by how far down south step is from highest
lattice point under the line + j for πj .
Tuple ordered by how far marked lattice points are from slight
perturbation of line.

· · · ·
· · ·
· · ·
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Dens and nests

In our paper, we provide a more general definition of den as a tuple of
data (h, p, d , e) ∈ Z>0 × (R \Q)× Zh+1 × Zh+1 subject to some
conditions.

To each den we can associate a tame Catalanimal H and give a
corresponding shuffle theorem as a sum over the nests of the den.

These results hold “stably.” In other words, a stronger result is
proven before applying polynomial truncation.

This allows us to simultaneously generalize the sλ[−MXm,n] formula
and our “shuffle theorem for paths under any line” formula (BHMPS).
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Other exhibits for next time

For each LLT polynomial Gν and coprime (m, n) with m > 0, an
m, n-cuddly Catalanimal with cub Gν is given. (BHMPS)

Special cases include Schur functions and Hall-Littlewood
polynomials.

Unicorn Catalanimals (or Catalan functions) where Rt = Rqt = ∅ also
have a rich (older) results and combinatorics, but served as
inspiration. (Chen-Haiman, Blasiak-Morse-Pun-Summers,
Blasiak-Morse-Pun)
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Future work: exit through the gift shop

Is there a representation-theoretic model for ∇sµ? For any
Catalanimal associated to a den?

Any direct combinatorial formula (even a conjecture) for the
Schur-expansion coefficients?

What other families of symmetric functions can be represented by
Catalanimals? Upcoming: Macdonald polynomials

What connections do Catalanimals have with machinery used to prove
other shuffle theorems, such as work by Carlsson-Mellit?
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Thank you for visiting!
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