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Polynomials

o f € Qxiy,...,xy| multivariate polynomial
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Polynomials

o f € Qxiy,...,xy| multivariate polynomial

1 2 3
<3 5 1> (5x% 4+ 5x3 4 8x3) = 8x¥ 4 5x3 + 5x5
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Polynomials

o f € Qxiy,...,xy| multivariate polynomial

1 2 3
<3 5 1> (5x% 4+ 5x3 4 8x3) = 8x¥ 4 5x3 + 5x5

® 0 € Spacts as 0.f(x1, %2, ..+, Xn) = F(Xp(1)s Xo(2)s - - + > Xor(m))
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Symmetric Polynomials

e Polynomials f € Q[xq, ..., x,] satisfying o.f = f?
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Symmetric Polynomials

e Polynomials f € Q[xq, ..., x,] satisfying o.f = f?

e Symmetric polynomials (n = 3)

e1=x1+x+x3=h
e = x1X0 + x13 + xox3 My = X7 + x1x0 + x1x3 + X3 + x0x3 + X3

€3 = x1xo0x3 h3 = xf + x12xz + X12X3 + x1x22 + -
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Symmetric Polynomials

e Polynomials f € Q[xq, ..., x,] satisfying o.f = f?
e Symmetric polynomials (n = 3)

e1=x1+x+x3=h
e = x1X0 + x13 + xox3 My = X7 + x1x0 + x1x3 + X3 + x0x3 + X3

€3 = x1xo0x3 h3 = x13 + x12x2 + X12X3 + x1x22 + .-

o {f €Q[x1,...,xn] | o.f = fVo € Sp} forms a vector space, Ag.

George H. Seelinger (UMich)
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Combinatorics of Symmetric Polynomials

Generators

e = g Xiy Xip +++ X;, or hy = g Xiy Xip * * * Xi,

i1 <ip <<y i1 < <---<ir
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Combinatorics of Symmetric Polynomials

Generators
e = g Xiy Xip +++ X;, or hy = g Xiy Xip * * * Xi,
i1 <ip <<y i1 < <---<ir
Symmetric functions are polynomials in the e1, e, ..., or in the hy, ho, ...

3h2h% — h% + 6h3h; = 3h(211) — h(22) + 6h(31)
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Combinatorics of Symmetric Polynomials

Generators
e = g Xiy Xip +++ X;, or hy = g Xiy Xip * * * Xi,
i1 <ip <<y i1 < <---<ir
Symmetric functions are polynomials in the e1, e, ..., or in the hy, ho, ...

3h2h% — h% + 6h3h; = 3h(211) — h(22) + 6h(31)

Basis of Ag?
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Definition

n € Z~o, a partition of nis A = (A1 > A2 > -+ > Ay > 0) such that
AM+A+--+ N =n.

George H. Seelinger (UMich) Dens, Nests, and Catalanimals 17 March 2023



Definition

n € Z~o, a partition of nis A = (A1 > A2 > -+ > Ay > 0) such that
AM+A+--+ N =n.

5 — CITTT 24+2+1 - H

]

441 —H 2+1+1+1—>E

3+2—HH 1+1+1+1+1—>E
341414

George H. Seelinger (UMich) Dens, Nests, and Catalanimals 17 March 2023



Definition

Filling of partition diagram of A with numbers such that
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Definition

Filling of partition diagram of A with numbers such that

@ strictly increasing down columns
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Definition

Filling of partition diagram of A with numbers such that
@ strictly increasing down columns

@ weakly increasing along rows
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Definition

Filling of partition diagram of A with numbers such that
@ strictly increasing down columns
@ weakly increasing along rows

Collection is called SSYT(M).

George H. Seelinger (UMich) Dens, Nests, and Catalanimals 17 March 2023



Definition

Filling of partition diagram of A with numbers such that

@ strictly increasing down columns

@ weakly increasing along rows
Collection is called SSYT(M).

For A =(2,1),
111] [1]1] [2]2] [1[2] [1[3] [2[3] [1[3] [1[2]
2 3 2 3 3 2] 3

L— | y L=
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Schur functions

Associate a polynomial to SSYT(\).
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Schur functions

Associate a polynomial to SSYT(\).

11 (111 [2]2] [1[2] [113] [2]3] [1[3] [1]2]
2 B B 2 B 3B 2 3

_— ) — y — )y /9y — )y — ) —
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Schur functions

Associate a polynomial to SSYT(\).

111 [1]1] [2]2] [1]2] [1]3] [2]3] [1]3] [1]2]
2 30 3] 12 18 13 2] 13
Weight:  (2,1,0) (2,0,1) (0,2,1) (1,2,0) (1,02) (0,1,2) (1,1,1) (1,1,1)
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Schur functions

Associate a polynomial to SSYT(\).

111 [1]1] [2]2] [1]2] [1]3] [2]3] [1]3] [1]2]
2 30 3] 12 18 13 2] 13
Weight:  (2,1,0) (2,0,1) (0,2,1) (1,2,0) (1,02) (0,1,2) (1,1,1) (1,1,1)

2 2 2 2 2 2
5(21)(X1, X2,X3) = X{ X2 + X{ X3 + X5 X3 + X1X5 + X1X5 + XoX3 + 2X1X2X3
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Schur functions

Associate a polynomial to SSYT(\).

111 [1]1] [2]2] [1]2] [1[3] [2 1
2 3.3 .2 B3 3

Weight: (2,17:») E2,0,1) (0,2,1) (1,2,0) (1,0,2) (0,1,2) ’(1,71,1) (1,1,1)

3] [113] [1]2]

2 2 2 2 2 2
5(21)(x1, X2,X3) = X{ X2 + X{ X3 + X5 X3 + X1X5 + X1X5 + XoX3 + 2X1X2X3

Definition

For A\ a partition

Z xT forxT:Hx,-

TEeSSYT(A) ieT

S\
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Schur functions

Associate a polynomial to SSYT(\).

111 [1]1] [2]2] [1[2] [1[3] [2]3] [1[3] [T
2] [3] 8] [ [2] B8] 18] ,[2] I3

Weight: (2,17:») (2,0,1) (0,2,1) (1,2,0) (1,0,2) (0,1,2) (1,1,1) (1,1,1)

2]

2 2 2 2 2 2
5(21)(x1, X2,X3) = X{ X2 + X{ X3 + X5 X3 + X1X5 + X1X5 + XoX3 + 2X1X2X3

Definition

For A\ a partition

Z xT forxT:Hx,-

TEeSSYT(A) ieT

S\

@ sy is a symmetric function
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Schur functions

Associate a polynomial to SSYT(\).

111 [1]1] [2]2] [1[2] [1[3] [2]3] [1[3] [T
2] [3] 8] [ [2] B8] 18] ,[2] I3

Weight: (2,17:») (2,0,1) (0,2,1) (1,2,0) (1,0,2) (0,1,2) (1,1,1) (1,1,1)

2]

2 2 2 2 2 2
5(21)(x1, X2,X3) = X{ X2 + X{ X3 + X5 X3 + X1X5 + X1X5 + XoX3 + 2X1X2X3

Definition

For A\ a partition

Z xT forxT:Hx,-

TEeSSYT(A) ieT

S\

@ sy is a symmetric function
@ Schur functions form a basis for Ag
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Why Schur functions?

Harmonic polynomials

M = polynomials killed by all symmetric differential operators.
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Why Schur functions?

Harmonic polynomials
M = polynomials killed by all symmetric differential operators.

Explicitly, for
X12 x; 1
A=det|x3 xo 1| =xZ(x0—x3)—x3(x1 — x3) + x5 (x1 — x0)
X\% x3 1
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Why Schur functions?

Harmonic polynomials
M = polynomials killed by all symmetric differential operators.

Explicitly, for
X12 x; 1
A=det|x3 xo 1| =xZ(x0—x3)—x3(x1 — x3) + x5 (x1 — x0)
X32 x3 1

M is the vector space given by
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Why Schur functions?

Harmonic polynomials
M = polynomials killed by all symmetric differential operators.

Explicitly, for
X12 x; 1
A=det|x3 xo 1| =xZ(x0—x3)—x3(x1 — x3) + x5 (x1 — x0)
X32 x3 1

M is the vector space given by

M =sp { (8)‘318526;3) Alab,c> 0}
=sp{A, 2x1(x2 — x3) — X3 + x5, 2x0(x3 — x1) — X5 + X7,

X3 — X1,X2 — X3, 1}

17 March 2023
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Harmonic polynomials

@ 53 action on M fixes vector subspaces!

sp{A, 2x1(x2 — x3) —x22 +X32, 2xp(x3 — x1) —x32 +x12,X3 —x1,X—x3,1}
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Harmonic polynomials

@ 53 action on M fixes vector subspaces!

sp{A, 2x1(x2 — x3) —x22 +X32, 2xp(x3 — x1) —x32 +x12,X3 —x1,X—x3,1}

@ Break M up into smallest S, fixed subspaces

George H. Seelinger (UMich) Dens, Nests, and Catalanimals 17 March 2023



Harmonic polynomials

@ 53 action on M fixes vector subspaces!

sp{A, 2x1(x2 — x3) —x22 +x32, 2xp(x3 — x1) —x32 +x12,X3 —x1,X—x3,1}

@ Break M up into smallest S, fixed subspaces

sp{A} P sp{2x1(xa—x3) x5 +x3, 2x2(x3—x1)—x34+x7 } @ sp{x3—x1, x2—x3} D sp{1}
—— ——"

- i SE
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Harmonic polynomials

@ 53 action on M fixes vector subspaces!

sp{A, 2x1(x2 — x3) —x22 +x32, 2xp(x3 — x1) —x32 +x12,X3 —x1,X—x3,1}

@ Break M up into smallest S, fixed subspaces

sp{A} P sp{2x1(xa—x3) x5 +x3, 2x2(x3—x1)—x34+x7 } @ sp{x3—x1, x2—x3} D sp{1}
—— ——"

- i SE

© How many times does an S, fixed subspace occur?
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Harmonic polynomials

@ 53 action on M fixes vector subspaces!

sp{A, 2x1(x2 — x3) —x22 +x32, 2xp(x3 — x1) —x32 +x12,X3 —x1,X—x3,1}

@ Break M up into smallest S, fixed subspaces

sp{A} P sp{2x1(xa—x3) x5 +x3, 2x2(x3—x1)—x34+x7 } @ sp{x3—x1, x2—x3} D sp{1}
—— ——"

- i SE

© How many times does an S, fixed subspace occur? Frobenius:
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Harmonic polynomials

@ 53 action on M fixes vector subspaces!

sp{A, 2x1(x2 — x3) —x22 +x32, 2xp(x3 — x1) —x32 +x12,X3 —x1,X—x3,1}

@ Break M up into smallest S, fixed subspaces

sp{A} P sp{2x1(xa—x3) x5 +x3, 2x2(x3—x1)—x34+x7 } @ sp{x3—x1, x2—x3} D sp{1}
—— ——"

- i SE

© How many times does an S, fixed subspace occur? Frobenius:

613=(X1+X2+X3)3=s§+saj+saj+m
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Harmonic polynomials

@ 53 action on M fixes vector subspaces!

sp{A, 2x1(x2 — x3) —x22 +x32,2X2(X3 —x1) —x32—|—x12,X3 —x1,X—x3,1}

@ Break M up into smallest S, fixed subspaces

sp{A} P sp{2x1(xa—x3) x5 +x3, 2x2(x3—x1)—x34+x7 } @ sp{x3—x1, x2—x3} D sp{1}
—— ——"

- i SE

© How many times does an S, fixed subspace occur? Frobenius:

613=(X1+X2+X3)3=s§+saj+saj+m

Schur basis expansion counts multiplicity of irreducible S, fixed subspaces!
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Recap so far

@ Combinatorics: Schur functions are weight generating functions of
semistandard tableaux.
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@ Combinatorics: Schur functions are weight generating functions of
semistandard tableaux.

@ Algebra: Schur functions count multiplicity of irreducible S,-fixed
vector subspaces (representations).
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@ Combinatorics: Schur functions are weight generating functions of
semistandard tableaux.

@ Algebra: Schur functions count multiplicity of irreducible S,-fixed
vector subspaces (representations).

Via Frobenius characteristic map, questions about S,-representations get
translated to questions about Schur expansion coefficients in symmetric
functions.
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@ Combinatorics: Schur functions are weight generating functions of
semistandard tableaux.

@ Algebra: Schur functions count multiplicity of irreducible S,-fixed
vector subspaces (representations).

Via Frobenius characteristic map, questions about S,-representations get
translated to questions about Schur expansion coefficients in symmetric
functions.

Does a symmetric function expand into Schur basis with nonnegative
coefficients? Is there a combinatorial description for coefficients?
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Getting more information
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Getting more information

Break M up into smallest S, fixed subspaces
sp{A} @ sp{2x1 (xo—x3)—x2+X2, 2x0(x3—X1 ) —Xa+x2} @ sp{x3—x1, Xo—x3} ® sp{1}
——r ——

- T g

deg=2 deg=1
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Getting more information

Break M up into smallest S, fixed subspaces
sp{A} @ sp{2x1 (xo—x3)—x2+X2, 2x0(x3—X1 ) —Xa+x2} @ sp{x3—x1, Xo—x3} ® sp{1}
——r ——

- T g

deg=2 deg=1

Solution: minimal S,-fixed subspace of degree d — g%sy (graded

Frobenius)
7 =q° 2
"?7=gq EJFC] SE|:|+C]SE|:|+5|:|:|:|

George H. Seelinger (UMich) Dens, Nests, and Catalanimals 17 March 2023



Getting more information

Break M up into smallest S, fixed subspaces

sp{A} @ sp{2x1 (xo—x3)—x2+X2, 2x0(x3—X1 ) —Xa+x2} @ sp{x3—x1, Xo—x3} ® sp{1}

—— ——

; T s
deg=2 deg=1

Solution: minimal S,-fixed subspace of degree d — g%sy (graded

Frobenius)
7 =q° 2
"?7=gq EJFC] SE|:|+C]SE|:|+5|:|:|:|

Answer: “Hall-Littlewood polynomial” E(X;q).
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A Problem

@ In 1988, Macdonald introduces a family of symmetric polynomials
with coefficients in Q(q, t) generalizing Hall-Littlewood polynomials.
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A Problem

@ In 1988, Macdonald introduces a family of symmetric polynomials
with coefficients in Q(q, t) generalizing Hall-Littlewood polynomials.

@ Garsia modifies these polynomials so

I:I)\(X; q,t) = Z R(q, t)s, conjecturally satisfies R(q, t) € N[q, t]
m
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A Problem

@ In 1988, Macdonald introduces a family of symmetric polynomials
with coefficients in Q(q, t) generalizing Hall-Littlewood polynomials.

@ Garsia modifies these polynomials so

I:I)\(X; q,t) = Z R(q, t)s, conjecturally satisfies R(q, t) € N[q, t]
m

o AN(X;1,1) = e},
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A Problem

@ In 1988, Macdonald introduces a family of symmetric polynomials
with coefficients in Q(q, t) generalizing Hall-Littlewood polynomials.

@ Garsia modifies these polynomials so

I:I)\(X; q,t) = Z R(q, t)s, conjecturally satisfies R(q, t) € N[q, t]
m

o AN(X;1,1) = e},
@ Does there exist a family of Sy-representations whose (bigraded)
Frobenius characteristics equal Hy(X; g, t)?
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Garsia-Haiman modules

° Q[le cees Xy Y1, e a.yn] satisfying O(Xi) = X (i) 0'(_)/_,) = Yo(j)-
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Garsia-Haiman modules

o Q[le s Xny Y1,-0s a.yn] satisfying O(Xi) = Xa(i)v 0'(_)/_,) = yo‘(j)
e Garsia-Haiman (1993): M,, = span of partial derivatives of
i—1 j—1
By, = det(i jep ket (5 Vi)

George H. Seelinger (UMich) Dens, Nests, and Catalanimals 17 March 2023



Garsia-Haiman modules

o Q[le s Xny Y1,-0s a.yn] satisfying O(Xi) = Xa(i)v 0'(_)/_,) = yo‘(j)
e Garsia-Haiman (1993): M,, = span of partial derivatives of
i—1 j—1
By, = det(i jep ket (5 Vi)

1 i x
AEI:I =det|l y» x| =X3y2 — y3X2 — y1X3 + y1X20 + y3x1 — yox1
1 y3 x3
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Garsia-Haiman modules

o Q[Xla s Xny Y1,-0s a.yn] SatiSfying O(Xi) = Xa(i)v 0'(_)/_,) = yo‘(j)
e Garsia-Haiman (1993): M,, = span of partial derivatives of
i—1 j—1
By, = det(i jep ket (5 Vi)

1 i x
AEI:I =det|l y» x| =X3y2 — y3X2 — y1X3 + y1X20 + y3x1 — yox1
1 y3 x3

Mz 1 =sp{A21} ®splys — y1,y1 — y2} ©sp{xs — x1,x1 — x2} @ sp{l}
~— ~—~—
deg=(1,1) deg=(0,1) deg=(1,0) deg=(0,0)
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Garsia-Haiman modules

o Q[Xla s Xny Y1,-0s a.yn] SatiSfying O(Xi) = Xa(i)v 0'(_)/_,) = yo‘(j)
e Garsia-Haiman (1993): M,, = span of partial derivatives of
i—1 j—1
By, = det(i jep ket (5 Vi)

1 i x
AEI:I =det|l y» x| =X3y2 — y3X2 — y1X3 + y1X20 + y3x1 — yox1
1 y3 x3

Mz 1 =sp{A21} ®splys — y1,y1 — y2} ©sp{xs — x1,x1 — x2} @ sp{l}
~— ~—~—
deg=(1,1) deg=(0,1) deg=(1,0) deg=(0,0)

Irreducible S,-representation with bidegree (a, b) — g7t’sy
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Garsia-Haiman modules

o Q[Xla s Xny Y1,-0s a.yn] SatiSfying O(Xi) = Xa(i)v 0'(_)/_,) = yo‘(j)
e Garsia-Haiman (1993): M,, = span of partial derivatives of
i—1 j—1
By, = det(i jep ket (5 Vi)

1 i x
AEI:I =det|l y» x| =X3y2 — y3X2 — y1X3 + y1X20 + y3x1 — yox1
1 y3 x3

Mz 1 =sp{A21} ®splys — y1,y1 — y2} ©sp{xs — x1,x1 — x2} @ sp{l}
~— ~—~—
deg=(1,1) deg=(0,1) deg=(1,0) deg=(0,0)

Irreducible S,-representation with bidegree (a, b) — g7t’sy

I:IBj:nt—l—tsﬂj—i-qsﬂj—i-m
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Garsia-Haiman modules

Theorem (Haiman, 2001)

The Garsia-Haiman module M) has bigraded Frobenius characteristic
given by Hx(X; g, t)
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Garsia-Haiman modules

Theorem (Haiman, 2001)

The Garsia-Haiman module M) has bigraded Frobenius characteristic
given by Hx(X; g, t)

@ Proved via geometric connection to the Hilbert Scheme Hilb"(C?).
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Garsia-Haiman modules

Theorem (Haiman, 2001)

The Garsia-Haiman module M) has bigraded Frobenius characteristic
given by Hx(X; g, t)

@ Proved via geometric connection to the Hilbert Scheme Hilb"(C?).

I:I)\(X; q, t) = Z'u k)\,u,(q7 t)su satisfies R)\,u,(q7 t) € N[qu t]'
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Garsia-Haiman modules

Theorem (Haiman, 2001)

The Garsia-Haiman module M) has bigraded Frobenius characteristic
given by Hx(X; g, t)

@ Proved via geometric connection to the Hilbert Scheme Hilb"(C?).

I:I)\(X; q, t) = Z'u k)\,u,(q7 t)su satisfies R)\,u,(q7 t) € N[qu t]'

@ No combinatorial description of RA#(q, t). (Still open!)
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Garsia-Haiman modules

Observation

All of these Garsia-Haiman modules are contained in the module of
diagonal harmonics:

DH, =sp{f € C[x1,. .., Xn, Y1, -+, Yn] | 26’85 f=0,Yr+s>0}

Xj = Yj
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Garsia-Haiman modules

Observation

All of these Garsia-Haiman modules are contained in the module of
diagonal harmonics:

DH, =sp{f € C[x1,. .., Xn, Y1, -+, Yn] | 26’85 f=0,Yr+s>0}

Xj = Yj

v

What symmetric function is the bigraded Frobenius characteristic of DH,,?
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Ve,

Frobenius characteristic of DH3
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Frobenius characteristic of DH3

3y 11 . (q%t+qt>+qt)Ha 1 q3Hs

- —qt2+t3+q2—qt —q2t2+q3+t3—qt —q3+q2t+qt—t2
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Frobenius characteristic of DH3

o 3y 11 . (q%t+qt>+qt)Ha 1 . q3Hs
- —qt2+t3+q2—qt —q2t2+q3+t3—qt —q3+q2t+qt—t2
Compare to
o2 — Fhia . (q+t4+1)Fa 1 . Hs
37 Tttt qP—qt | —qPP A gtti—qt | —q3tqPtiqt—t2
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Frobenius characteristic of DH3

o 3y 11 . (q%t+qt>+qt)Ha 1 . q3Hs
- —qt2+t3+q2—qt —q2t2+q3+t3—qt —q3+q2t+qt—t2
Compare to
o2 — Fhia . (g+t+1)Ha 1 . 25
37 Tttt qP—qt | —qPP A gtti—qt | —q3tqPtiqt—t2

Operator V

VANX; q,t) = ¢"M "I AL (X g, 1)
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Frobenius characteristic of DH3

o 3y 11 . (q%t+qt>+qt)Ha 1 . q3Hs
- —qt2+t3+q2—qt _q2t2+q3+t3_qt —q3+q2t+qt—t2
Compare to
o2 — Fhia . (g+t+1)Ha 1 . 25
37 Tttt qP—qt | —qPP A gtti—qt | —q3tqPtiqt—t2

Operator V

VANX; q,t) = ¢"M "I AL (X g, 1)

Theorem (Haiman, 2002)

The bigraded Frobenius characteristic of DH,, is given by Ve,.
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A Combinatorial Connection: Shuffle Theorem

Theorem (Carlsson-Mellit, 2018)

Vek(X) _ Z tarea()\) qdinv(A)wgu()\) (X; q—l)
A

e Conjectured by (Haiman-Haglund-Loehr-Remmel-Ulyanov, 2002).
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Theorem (Carlsson-Mellit, 2018)

Vek(X) _ Z tarea()\) qdinv(A)wgu()\) (X; q—l)
A

e Conjectured by (Haiman-Haglund-Loehr-Remmel-Ulyanov, 2002).
@ Combinatorial RHS: Combinatorics of Dyck paths.
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A Combinatorial Connection: Shuffle Theorem

Theorem (Carlsson-Mellit, 2018)

Vek(X) _ Z tarea()\) qdinv(A)wgu()\) (X; q—l)
A

e Conjectured by (Haiman-Haglund-Loehr-Remmel-Ulyanov, 2002).
@ Combinatorial RHS: Combinatorics of Dyck paths.
@ Summation over all k-by-k Dyck paths.
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A Combinatorial Connection: Shuffle Theorem

Theorem (Carlsson-Mellit, 2018)

Vek(X) _ Z tarea()\) qdinv(A)wgu()\) (X; q—l)
A

Conjectured by (Haiman-Haglund-Loehr-Remmel-Ulyanov, 2002).
Combinatorial RHS: Combinatorics of Dyck paths.

Summation over all k-by-k Dyck paths.

area(A) and dinv(\) statistics of Dyck paths.
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A Combinatorial Connection: Shuffle Theorem

Theorem (Carlsson-Mellit, 2018)

Vek(X) _ Z tarea()\) qdinv(A)wgu()\) (X; q—l)
A

e Conjectured by (Haiman-Haglund-Loehr-Remmel-Ulyanov, 2002).

@ Combinatorial RHS: Combinatorics of Dyck paths.

@ Summation over all k-by-k Dyck paths.

@ area(A) and dinv(\) statistics of Dyck paths.

° gl,()\)(X; q) a symmetric LLT polynomial indexed by a tuple of offset
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A Dyck path ) is a south-east lattice path lying below the line segment
from (0, k) to (k,0).
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A Dyck path ) is a south-east lattice path lying below the line segment
from (0, k) to (k,0).

@ area(\) = number of squares above A but below the path ¢ of
alternating S-E steps.
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Dyck paths

A Dyck path ) is a south-east lattice path lying below the line segment
from (0, k) to (k,0).

@ area(\) = number of squares above A but below the path ¢ of
alternating S-E steps.
e E.g., above area(\) = 10.
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Dyck paths

A Dyck path ) is a south-east lattice path lying below the line segment
from (0, k) to (k,0).

Sl

@ area(\) = number of squares above A but below the path ¢ of
alternating S-E steps.

e E.g., above area(\) = 10.

o Catalan-number many Dyck paths for fixed k.
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Dyck paths

A Dyck path ) is a south-east lattice path lying below the line segment
from (0, k) to (k,0).

Sl

@ area(\) = number of squares above A but below the path ¢ of
alternating S-E steps.

e E.g., above area(\) = 10.

o Catalan-number many Dyck paths for fixed k. (1,2,5,14,42,...)

George H. Seelinger (UMich) Dens, Nests, and Catalanimals 17 March 2023



dinv

dinv(\) =# of balanced hooks in diagram below .

gl
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dinv(\) =# of balanced hooks in diagram below .

a
Balanced hook is given by a cell below A satisfying

4 {+1
<l—e<——, e€small
a+1 a
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LLT Polynomials

Defined in general for a tuple of skew shapes v = (v(1), ... v(")
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LLT Polynomials

Defined in general for a tuple of skew shapes v = (v(1), ... v(")

e G,(X;q) is a symmetric function
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LLT Polynomials

Defined in general for a tuple of skew shapes v = (v(1), ... v(")
e G,(X;q) is a symmetric function
° Gu(Xi1)=5s,0) 5,00
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LLT Polynomials

Defined in general for a tuple of skew shapes v = (v(1), ... v(")
e G,(X;q) is a symmetric function
° Gu(Xi1)=5s,0) 5,00

@ G, were originally defined by Lascoux, Leclerc, and Thibon to explore
connections to Fock space representations of U,(sl,)
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LLT Polynomials

Defined in general for a tuple of skew shapes v = (v(1), ... v(")
e G,(X;q) is a symmetric function
° Gu(Xi1)=5s,0) 5,00

@ G, were originally defined by Lascoux, Leclerc, and Thibon to explore
connections to Fock space representations of U,(sl,)

@ When v() are partitions, the Schur-expansion coefficients are
essentially parabolic Kazdhan-Luzstig polynomials.
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LLT Polynomials

Defined in general for a tuple of skew shapes v = (v(1), ... v(")

e G,(X;q) is a symmetric function
° Gu(X;1)=s,0 5,00

@ G, were originally defined by Lascoux, Leclerc, and Thibon to explore
connections to Fock space representations of U,(sl,)

@ When v() are partitions, the Schur-expansion coefficients are
essentially parabolic Kazdhan-Luzstig polynomials.

@ G, is Schur-positive for any tuple of skew shapes v
[Grojnowski-Haiman, 2007].
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LLT Polynomials

G,(»)(X; q) is an LLT polynomial for a tuple of rows,
v(\) = (v, .. v),
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G,(»)(X; q) is an LLT polynomial for a tuple of rows,
v(\) = (v, .. v),
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LLT Polynomials

G,(»)(X; q) is an LLT polynomial for a tuple of rows,
v(\) = (v, .. v),

14
— UV
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LLT Polynomials

G,(»)(X; q) is an LLT polynomial for a tuple of rows,
v(\) = (v, .. v),

14
— UV
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LLT Polynomials

G,(»)(X; q) is an LLT polynomial for a tuple of rows,
v(\) = (v, .. v),

14
— UV
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LLT Polynomials

G.(Xq) = >, qdTxT

TESSYT(v)

for T a weakly increasing filling of rows and i(T) the number of attacking
inversions:
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LLT Polynomials

G.(Xq) = >, qdTxT
TeSSYT(v)

for T a weakly increasing filling of rows and i(T) the number of attacking
inversions:

[1[2[3]3]5]
[2[4]4]718]9]9]
T = [1[1]6]7]7]7]
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LLT Polynomials

G.(Xq) = >, qdTxT
TeSSYT(v)

for T a weakly increasing filling of rows and i(T) the number of attacking
inversions:

[1]2[3]3]5]
(2]4]4]7]8]9]9]
T = [1[1]6[71717] _, g (MxT = G183 X3 X2 X2 x5.X6 X3 Xg X3
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LLT Polynomials

G.(Xq) = >, qdTxT
TeSSYT(v)

for T a weakly increasing filling of rows and i(T) the number of attacking
inversions:

[1]2[3]3]5]
(2]4]4]7]8]9]9]
T = [1[1]6[71717] _, g (MxT = G183 X3 X2 X2 x5.X6 X3 Xg X3

Grm(xa, x2; q) =x3 + xixa + x1x3 + X3 + @xxa + qxxd

0
=S3 1+ g1
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Example Ve;

A qdinv()\) tarea(}) qdinv()\) tarea(/\)gyo\) (X; q—l)
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Example Ve;

A qdinv()\) tarea(}) qdinv()\) tarea(/\)gyo\) (X; q—l)

o7 57 R R
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Example Ve;

A qdinv()\) tarea(}) qdinv()\) tarea(k)gy(}\)(x; q—l)

qt

qt

o7 57 R R
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Example Ve;

A gdinvd) garea() qdinv(A)tarea(A)gy(A)(X; g b
q S3+gse,1 + q252,1 + q351,1,1
q°t qtso1 + q° ts1,11

tsp1 + qtsi 1,1

qt? t252,1 + qf251,1,1

o7 57 R R

3 t3517171
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Example Ve;

A qdinv()\) tarea(}) qdinv()\) tarea(k)gy(}\)(x; q—l)

LI_L q° s34+ qsa1+ G%sa1 + s
LL q°t qtsa1 + G°tsi1a
1 gt tsp1 + qtsi 1,1

Ll; qt? t252,1 + qf251,1,1

L t3 35111

o Entire quantity is g, t-symmetric
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Example Ve;

A qdinv()\) tarea(}) qdinv()\) tarea(k)gy(}\)(x; q—l)

LI_L q° s34+ qsa1+ G%sa1 + s
LL q°t qtsa1 + G°tsi1a
1 gt tsp1 + qtsi 1,1

Ll; qt? t252,1 + qf251,1,1

L t3 35111

o Entire quantity is g, t-symmetric
o Coefficient of 5111 in sumis a “(q, t)-Catalan number”
(¢ + ¢°t + qt + qt*> + t3).

George H. Seelinger (UMich) Dens, Nests, and Catalanimals

17 March 2023



Generalizing Shuffle Theorem

When a problem is too difficult, try generalizing!
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Generalizing Shuffle Theorem

When a problem is too difficult, try generalizing!

Algebraic Expression Combinatorial Expression
Ver(X) =)>_q,t-weighted Dyck paths
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Generalizing Shuffle Theorem

When a problem is too difficult, try generalizing!

Algebraic Expression Combinatorial Expression

Ver(X) =)>_q,t-weighted Dyck paths

Rational Shuffle Conjecture (F. Bergeron, Garsia, Sergel Leven, Xin,

2016) (Proved by Mellit, 2016)

For m, n coprime, the operator ex[—MX™"] acting on A satisfies

ex[-MX™"] .1 = Z q, t-weighted (km, kn)-Dyck paths

George H. Seelinger (UMich)
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Generalizing Shuffle Theorem

When a problem is too difficult, try generalizing!

Algebraic Expression Combinatorial Expression

Ver(X) =)>_q,t-weighted Dyck paths

Rational Shuffle Conjecture (F. Bergeron, Garsia, Sergel Leven, Xin,

2016) (Proved by Mellit, 2016)

For m, n coprime, the operator ex[—MX™"] acting on A satisfies

ex[-MX™"] .1 = Z q, t-weighted (km, kn)-Dyck paths

(0, kn) I»

George H. Seelinger (UMich)

Dens, Nests, and Catalanimals 17 March 2023



Welcome to the Zoo

@ The operators ex[—MX™"] arise from an action of Schiffmann
algebra £ on A.
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Welcome to the Zoo

@ The operators ex[—MX™"] arise from an action of Schiffmann
algebra £ on A.

@ & contains subalgebra A(X™") = A for each coprime pair (m, n) € Z2.
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Welcome to the Zoo

@ The operators ex[—MX™"] arise from an action of Schiffmann
algebra £ on A.

@ & contains subalgebra A(X™") = A for each coprime pair (m, n) € Z2.

@ In general, £-action can be a pain to compute in a nice way, but
sometimes it is nice!
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Welcome to the Zoo: Catalanimals

Fix | € Zoo. Let Ry = {(i,j) [1<i<j<I}.
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Welcome to the Zoo: Catalanimals

Fix | € Zoo. Let Ry = {(i,j) [1<i<j<I}.

Definition

For subsets Rq, R:, Rgt € R4 and v € 7! a Catalanimal
H = H(Rq, Rt, Rgt,v)(21, - .-, 21; g, t) is a symmetric rational function
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Welcome to the Zoo: Catalanimals

Fix | € Zoo. Let Ry = {(i,j) [1<i<j<I}.

Definition

For subsets Rq, R:, Rgt € R4 and v € 7! a Catalanimal
H = H(Rq, Rt, Rgt,v)(21, - .-, 21; g, t) is a symmetric rational function

) ool H(i,j)Eth(l — qtz;/z)) )

w
wezs, <H(iJ)eR+(1 - 2j/z) H(i,j)eRq(l — 9zi/ zj) H(iJ)eRt(l — tzj/z))

o
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Welcome to the Zoo: Catalanimals

Fix | € Zoo. Let Ry = {(i,j) [1<i<j<I}.

Definition

For subsets Rq, R:, Rgt € R4 and v € 7! a Catalanimal
H = H(Rq, Rt, Rgt,v)(21, - .-, 21; g, t) is a symmetric rational function

) ool H(i,j)Eth(l — qtz;/z)) )

w
wezs, <H(iJ)eR+(1 - 2j/z) H(i,j)eRq(l — 9zi/ zj) H(iJ)eRt(l — tzj/z))

o

@ Can also be thought of as an infinite series of virtual GL;-characters.
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Welcome to the Zoo: Catalanimals

Fix | € Zoo. Let Ry = {(i,j) [1<i<j<I}.

Definition

For subsets Rq, R:, Rgt € R4 and v € 7! a Catalanimal
H = H(Rq, Rt, Rgt,v)(21, - .-, 21; g, t) is a symmetric rational function

) ool H(i,j)Eth(l — qtz;/z)) )

w
wezs, <H(iJ)eR+(1 - 2j/z) H(i,j)eRq(l — 9zi/ zj) H(iJ)eRt(l — tzj/z))

o

@ Can also be thought of as an infinite series of virtual GL;-characters.

@ We can take “polynomial part” (restrict to only polynomial
GL-characters) to get a symmetric function.
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Welcome to the Zoo: Catalanimals

@ Visual representations of Catalanimals are less scary.
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Welcome to the Zoo: Catalanimals

@ Visual representations of Catalanimals are less scary.
@ Assume Rq: € R: € Ry C Ry:
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Welcome to the Zoo: Catalanimals

@ Visual representations of Catalanimals are less scary.
@ Assume Rq: € R: € Ry C Ry:
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Tame and cuddly Catalanimals

@ Sometimes, there exists £ € £ such that £ -1 = wpoly H.
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Tame and cuddly Catalanimals

@ Sometimes, there exists { € £ such that £ -1 =wpoly H. (!
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Tame and cuddly Catalanimals

@ Sometimes, there exists { € £ such that £ -1 =wpoly H. (!
@ When Rg: C [Ry, Rt], then this happens. (Associated H is tame.)
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Tame and cuddly Catalanimals

@ Sometimes, there exists { € £ such that £ -1 =wpoly H. (!
@ When Rg: C [Ry, Rt], then this happens. (Associated H is tame.)

e When, H is (m, n)-cuddly (a set of inequalities on root sets and
weight), there exists an f € A such that f[-MX™"] -1 = wpoly H
(up to g, t-monomial and sign).
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Tame and cuddly Catalanimals

@ Sometimes, there exists { € £ such that £ -1 =wpoly H. (!
@ When Rg: C [Ry, Rt], then this happens. (Associated H is tame.)

e When, H is (m, n)-cuddly (a set of inequalities on root sets and
weight), there exists an f € A such that f[-MX™"] -1 = wpoly H
(up to g, t-monomial and sign).

@ In this case, we set cub(H) = f.
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Tame and cuddly Catalanimals

@ Sometimes, there exists { € £ such that £ -1 =wpoly H. (!

@ When Rg: C [Ry, Rt], then this happens. (Associated H is tame.)

e When, H is (m, n)-cuddly (a set of inequalities on root sets and
weight), there exists an f € A such that f[-MX™"] -1 = wpoly H
(up to g, t-monomial and sign).

@ In this case, we set cub(H) = f.

@ The cuddly conditions allow a nice coproduct formula for f[X + Y] in
terms of cubs of “restrictions” of H.
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Cuddly Catalanimals with cub ey

o H(Ry, R, [Ry, Ry], (1%)) is (1,1)-cuddly with cub e.
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Cuddly Catalanimals with cub ey

o H(Ry, R, [Ry, Ry], (1%)) is (1,1)-cuddly with cub e.

@ More generally, if § is the sequence of south step runs of highest path
under the line through (0, kn) to (km,0), then
ek[—MXm’"] 1= H(I?_;'_7 R+, [R+, R+], (S)

George H. Seelinger (UMich) Dens, Nests, and Catalanimals 17 March 2023



Cuddly Catalanimals with cub ey

o H(Ry, R, [Ry, Ry], (1%)) is (1,1)-cuddly with cub e.

@ More generally, if § is the sequence of south step runs of highest path
under the line through (0, kn) to (km,0), then
ek[—MXm’"] 1= H(I?_;'_7 R+, [R+, R+], (S)

1|
.

6=(1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0) and
es|-MX32] -1 = wpoly H
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1, 1-Cuddly Catalanimals with cub s,

@ Can construct root sets and weight from the content diagonals of p.

George H. Seelinger (UMich) Dens, Nests, and Catalanimals 17 March 2023



1, 1-Cuddly Catalanimals with cub s,

@ Can construct root sets and weight from the content diagonals of p.
o = | — L. I.1H — [1[O[1]0].
H . [ 2[1]0

2121
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1, 1-Cuddly Catalanimals with cub s,

@ Can construct root sets and weight from the content diagonals of p.
OT110],

o = | - BLT.H —

|
|
|
NINJH
—
(=

su[-~MX11] - 1= Vs, = wpoly H (up to g, t-monomial)
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Dens and nests

Theorem (Blasiak-Haiman-Morse-Pun-S. (20217))

For every partition p and coprime positive integers m, n, we have

Su[—MX™1] . 1
_ (_1)P(u)(qt)p(u)+m2?:1 (%) Z garea(m) glinve(m) G (X g7 1)

o Combinatorial RHS: Over all nests 7 in a den associated to p and
m, n.
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Dens and nests

Theorem (Blasiak-Haiman-Morse-Pun-S. (20217))

For every partition p and coprime positive integers m, n, we have

su[—MX™"] -1
_ (_l)p(u)(qt)p(u)erZf’:l (%) Z tarea(ﬂ)qdinvP(Tr)wgV(ﬂ)(X; g b

o Combinatorial RHS: Over all nests 7 in a den associated to p and
m, n.

o Conjectured by Loehr-Warrington (2008) when n =1 with different
combinatorics (but bijectively related).
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Dens and nests

Theorem (Blasiak-Haiman-Morse-Pun-S. (20217))

For every partition . and coprime positive integers m, n, we have
su[—MX™" - 1

— (_1)P(u)(qt)p(u)+m2f’:1 () Z tafea(ﬂ)qdinvp(ﬂ)wgy(w)(x; g

p= |
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Dens and nests

Theorem (Blasiak-Haiman-Morse-Pun-S. (20217))

For every partition . and coprime positive integers m, n, we have
su[—MX™" - 1

— (_1)P(u)(qt)p(u)+m2f’:1 () Z tafea(ﬂ)qdinvp(ﬂ)wgy(w)(x; g

p= |

@ p(p) = number of boxes with positive content. E
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Dens and nests

Theorem (Blasiak-Haiman-Morse-Pun-S. (20217))

For every partition . and coprime positive integers m, n, we have
su[—MX™" - 1

— (_1)P(u)(qt)p(u)+m2f’:1 () Z tafea(ﬂ)qdinvp(ﬂ)wgy(w)(x; g

p= |

@ p(p) = number of boxes with positive content. E

@ h = m(largest hook length in 1) = m(u1 + () — 1). E
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Dens and nests

Theorem (Blasiak-Haiman-Morse-Pun-S. (20217))

For every partition . and coprime positive integers m, n, we have
su[—MX™" - 1

— (_1)P(u)(qt)p(u)+m2f’:1 () Z tafea(ﬂ)qdinvp(ﬂ)wgy(w)(x; g

p= |

@ p(p) = number of boxes with positive content. E

@ h = m(largest hook length in 1) = m(u1 + () — 1). E
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Dens and nests

Theorem (Blasiak-Haiman-Morse-Pun-S. (2021%))

For every partition i and coprime positive integers m, n, we have
su[—=MX™" -1
= (_1)P(u)(qt)P(u)+m > (%) Z tarea(ﬂ)qdinvp(ﬂ)wgy(ﬂ)(x; g )
™

p= |

@ 7(p) is the tuple of the sizes of content diagonals.
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Dens and nests

Theorem (Blasiak-Haiman-Morse-Pun-S. (2021%))

For every partition i and coprime positive integers m, n, we have
su[—=MX™" -1
= (_1)P(u)(qt)P(u)+m > (%) Z tarea(ﬂ)qdinvp(ﬂ)wgy(ﬂ)(x; g )
™

p= |

@ 7(p) is the tuple of the sizes of content diagonals.
o u= | = = (1,2,3,2,1,1).
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Dens and nests

For given partition A
@ 0i(\) = x(A1 — 1 — i is the content of the last box of some row of \)
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Dens and nests

For given partition A
@ 0i(\) = x(A1 — 1 — i is the content of the last box of some row of \)
= 3= 6(p) = (1,0,1,1,0,0,...)
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For given partition A
@ 0i(\) = x(A1 — 1 — i is the content of the last box of some row of \)
= 3= 6(p) = (1,0,1,1,0,0,...)
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Dens and nests

For given partition A
@ 0i(\) = x(A1 — 1 — i is the content of the last box of some row of \)

o u=[IJ8 = d(u) = (1,0,1,1,0,0,...)
0

o () = x(i = A1)

= | = ¢(n) =(0,0,0,0,1,1,...)
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Dens and nests

To construct a (simplified) den,
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Dens and nests

To construct a (simplified) den,
@ Draw the line connecting (0, 2 h) and (h,0)
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Dens and nests

To construct a (simplified) den,
@ Draw the line connecting (0, 2 h) and (h,0)

@ Relationship between 6 and ¢ tell us where to place a lattice point on
each vertical, (weakly) below the line.
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Dens and nests

To construct a (simplified) den,
@ Draw the line connecting (0, 2 h) and (h,0)

@ Relationship between 6 and ¢ tell us where to place a lattice point on
each vertical, (weakly) below the line.

Q If 6i(n) > €i(p), lattice point on x = im is a source.
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Dens and nests

To construct a (simplified) den,
@ Draw the line connecting (0, 2 h) and (h,0)

@ Relationship between 6 and ¢ tell us where to place a lattice point on
each vertical, (weakly) below the line.

Q If 6i(n) > €i(p), lattice point on x = im is a source.
Q Similarly, 6;(1) < €;() = point on x = im is a sink.
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Dens and nests

To construct a (simplified) den,
@ Draw the line connecting (0, 2 h) and (h,0)
@ Relationship between 6 and ¢ tell us where to place a lattice point on
each vertical, (weakly) below the line.

Q If 6i(n) > €i(p), lattice point on x = im is a source.
Q Similarly, 6;(1) < €;() = point on x = im is a sink.

1 m=2n=1
¢} p=1(4,3,3,3,2)
oo e @ source

oe O sink

o ©
O O
o ©
o O

T
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Dens and nests

@ Number the sources left to right and the sinks right to left.
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Dens and nests

@ Number the sources left to right and the sinks right to left.

@ A nest is a collection of east end lattice paths (7(1), ... 7(")) that lie
weakly below the marked lattice points.
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Dens and nests

@ Number the sources left to right and the sinks right to left.

@ A nest is a collection of east end lattice paths (7(1), ... 7(")) that lie
weakly below the marked lattice points.

o Each 7() begins with a south step, starting at source i, and ends with
an east step into sink J.
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Dens and nests

@ Number the sources left to right and the sinks right to left.

@ A nest is a collection of east end lattice paths (7(1), ... 7(")) that lie
weakly below the marked lattice points.

o Each 7() begins with a south step, starting at source i, and ends with
an east step into sink J.

o Each 7() is nested below 7(*+1).
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Dens and nests

@ Number the sources left to right and the sinks right to left.

@ A nest is a collection of east end lattice paths (7(1), ... 7(")) that lie
weakly below the marked lattice points.

o Each 7() begins with a south step, starting at source i, and ends with
an east step into sink J.

o Each 7() is nested below 7(*+1).

o The interval of x-coordinates of 7('t1) is contained in the interval of
x-coordinates of (/).
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Dens and nests

@ Number the sources left to right and the sinks right to left.

@ A nest is a collection of east end lattice paths (7(1), ... 7(")) that lie
weakly below the marked lattice points.
o Each 7() begins with a south step, starting at source i, and ends with
an east step into sink J.
o Each 7() is nested below 7(*+1).
o The interval of x-coordinates of 7('*1) is contained in the interval of
x-coordinates of (7.

e Top of a south run of 7(t1) strictly above the top of a south run of
7() on same vertical.
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Dens and nests

@ Number the sources left to right and the sinks right to left.

@ A nest is a collection of east end lattice paths (7(1), ... 7(")) that lie
weakly below the marked lattice points.

o Each 7() begins with a south step, starting at source i, and ends with
an east step into sink J.

o Each 7() is nested below 7(*+1).
o The interval of x-coordinates of 7('*1) is contained in the interval of
x-coordinates of (7.
e Top of a south run of 7(t1) strictly above the top of a south run of
7() on same vertical.
o Bottom of a south run of 7(/) strictly below the bottom of a south run
of 7(*1) on same vertical.
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Dens and nests

@ Number the sources left to right and the sinks right to left.

@ A nest is a collection of east end lattice paths (7(1), ... 7(")) that lie
weakly below the marked lattice points.

o Each 7() begins with a south step, starting at source i, and ends with
an east step into sink J.
o Each 7() is nested below 7(*+1).
o The interval of x-coordinates of 7('*1) is contained in the interval of
x-coordinates of (7.
e Top of a south run of 7(t1) strictly above the top of a south run of
7() on same vertical.

o Bottom of a south run of 7(/) strictly below the bottom of a south run
of 7(*1) on same vertical.

gl
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Dens and nests

Example of the “highest nest” 7°

m=2n=1

w=(4,3,3,3,2)

o2 @ source
| O sink
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Dens and nests

Example of another nest.

1 m=2n=1

o w=(4,3,3,3,2)
@ source
O sink
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area(r) = Y i_; area(m;) where area(m;) = number of lattice squares
between 7; and 7.
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Area

area(r) = Y i_; area(m;) where area(m;) = number of lattice squares
between 7; and 7.

m=2n=1

1= (4,3,3,3,2)
@ source
[ O sink
o ©
o O

1 o ©
1 o O

— S area(m;) =9
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Dens and nests

@ Forp= " —¢ec R\ Q and e small, dinvy(7m) = #{(P,i,S,j)} where
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Dens and nests

@ Forp= " —¢ec R\ Q and e small, dinvy(7m) = #{(P,i,S,j)} where
e P is a non-sink lattice point in 7;
e S is a south step in 7;
e P is strictly to the left of S

o A line of slope —p passing through P passes through S.
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Dens and nests

@ Forp= " —¢ec R\ Q and e small, dinvy(7m) = #{(P,i,S,j)} where
e P is a non-sink lattice point in 7;
e S is a south step in 7;
e P is strictly to the left of S

o A line of slope —p passing through P passes through S.
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m
/,L:

=2,n=1

(4,3,3,3,2)
@ source
O sink

Contributes 3 to the dinv.

17 March 2023

George H. Seelinger (UMich)

Dens, Nests, and Catalanimals



m
/,L:

=2,n=1

(4,3,3,3,2)
@ source
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(4,3,3,3,2)
@ source
O sink

Contributes 3 to the dinv.
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m=2n=1
1 o uw=(4,3,3,3,2)
@ source
O sink

Contributes 3 to the dinv.
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Associating a tuple of skew partitions to a nest

@ Each vertical line x = i will give a skew partition.
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Associating a tuple of skew partitions to a nest

@ Each vertical line x = i will give a skew partition.
@ South steps of each path will contribute a row.
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Associating a tuple of skew partitions to a nest

@ Each vertical line x = i will give a skew partition.

@ South steps of each path will contribute a row.

@ Content determined by how far down south step is from highest
lattice point under the line + j for 7;.
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Associating a tuple of skew partitions to a nest

Each vertical line x = i will give a skew partition.

South steps of each path will contribute a row.

Content determined by how far down south step is from highest
lattice point under the line + j for 7;.

Tuple ordered by how far marked lattice points are from slight
perturbation of line.
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Associating a tuple of skew partitions to a nest

Each vertical line x = i will give a skew partition.

South steps of each path will contribute a row.

Content determined by how far down south step is from highest
lattice point under the line + j for 7;.

Tuple ordered by how far marked lattice points are from slight
perturbation of line.
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Associating a tuple of skew partitions to a nest

Each vertical line x = i will give a skew partition.

South steps of each path will contribute a row.
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Tuple ordered by how far marked lattice points are from slight
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Associating a tuple of skew partitions to a nest

Each vertical line x = i will give a skew partition.

South steps of each path will contribute a row.
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Tuple ordered by how far marked lattice points are from slight
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Associating a tuple of skew partitions to a nest

Each vertical line x = i will give a skew partition.

South steps of each path will contribute a row.

Content determined by how far down south step is from highest
lattice point under the line + j for 7;.

Tuple ordered by how far marked lattice points are from slight
perturbation of line.
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Dens and nests

@ In our paper, we provide a more general definition of den as a tuple of
data (h,p,d,e) € Zwo x (R\ Q) x Z"1 x Z"*1! subject to some
conditions.

George H. Seelinger (UMich) Dens, Nests, and Catalanimals 17 March 2023



Dens and nests

@ In our paper, we provide a more general definition of den as a tuple of
data (h,p,d,e) € Zwo x (R\ Q) x Z"1 x Z"*1! subject to some
conditions.

@ To each den we can associate a tame Catalanimal H and give a
corresponding shuffle theorem as a sum over the nests of the den.
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Dens and nests

@ In our paper, we provide a more general definition of den as a tuple of
data (h,p,d,e) € Zwo x (R\ Q) x Z"1 x Z"*1! subject to some
conditions.

@ To each den we can associate a tame Catalanimal H and give a
corresponding shuffle theorem as a sum over the nests of the den.

@ These results hold “stably.” In other words, a stronger result is
proven before applying polynomial truncation.

George H. Seelinger (UMich) Dens, Nests, and Catalanimals 17 March 2023



Dens and nests

@ In our paper, we provide a more general definition of den as a tuple of
data (h,p,d,e) € Zwo x (R\ Q) x Z"1 x Z"*1! subject to some
conditions.

@ To each den we can associate a tame Catalanimal H and give a
corresponding shuffle theorem as a sum over the nests of the den.

@ These results hold “stably.” In other words, a stronger result is
proven before applying polynomial truncation.

@ This allows us to simultaneously generalize the sy\[—MX™"] formula
and our “shuffle theorem for paths under any line” formula (BHMPS).
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Other exhibits for next time

@ For each LLT polynomial G, and coprime (m, n) with m > 0, an
m, n-cuddly Catalanimal with cub G, is given. (BHMPS)
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Other exhibits for next time

@ For each LLT polynomial G, and coprime (m, n) with m > 0, an
m, n-cuddly Catalanimal with cub G, is given. (BHMPS)

@ Special cases include Schur functions and Hall-Littlewood
polynomials.
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Other exhibits for next time

@ For each LLT polynomial G, and coprime (m, n) with m > 0, an
m, n-cuddly Catalanimal with cub G, is given. (BHMPS)

@ Special cases include Schur functions and Hall-Littlewood
polynomials.

@ Unicorn Catalanimals (or Catalan functions) where R; = Ry = @ also
have a rich (older) results and combinatorics, but served as
inspiration. (Chen-Haiman, Blasiak-Morse-Pun-Summers,
Blasiak-Morse-Pun)
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Future work: exit through the gift shop

@ Is there a representation-theoretic model for Vs,? For any
Catalanimal associated to a den?

George H. Seelinger (UMich) Dens, Nests, and Catalanimals 17 March 2023



Future work: exit through the gift shop

@ Is there a representation-theoretic model for Vs,? For any
Catalanimal associated to a den?

@ Any direct combinatorial formula (even a conjecture) for the
Schur-expansion coefficients?
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Future work: exit through the gift shop

@ Is there a representation-theoretic model for Vs,? For any
Catalanimal associated to a den?

@ Any direct combinatorial formula (even a conjecture) for the
Schur-expansion coefficients?

@ What other families of symmetric functions can be represented by
Catalanimals?
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Catalanimal associated to a den?

@ Any direct combinatorial formula (even a conjecture) for the
Schur-expansion coefficients?

@ What other families of symmetric functions can be represented by
Catalanimals? Upcoming: Macdonald polynomials
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Future work: exit through the gift shop

@ Is there a representation-theoretic model for Vs,? For any
Catalanimal associated to a den?

@ Any direct combinatorial formula (even a conjecture) for the
Schur-expansion coefficients?

@ What other families of symmetric functions can be represented by
Catalanimals? Upcoming: Macdonald polynomials

@ What connections do Catalanimals have with machinery used to prove
other shuffle theorems, such as work by Carlsson-Mellit?
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