Dens, nests, and Catalanimals: a walk through the zoo of shuffle theorems

George H. Seelinger

ghseeli@umich.edu

joint with Jonah Blasiak, Mark Haiman, Jennifer Morse, and Anna Pun

Michigan Combinatorics Seminar

17 March 2023

• $f \in \mathbb{Q}[x_1, \dots, x_n]$ multivariate polynomial

• $f \in \mathbb{Q}[x_1, \dots, x_n]$ multivariate polynomial $\begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} (5x_1^2 + 5x_2^2 + 8x_3^2) = 8x_1^2 + 5x_2^2 + 5x_3^2$

•
$$f \in \mathbb{Q}[x_1, \dots, x_n]$$
 multivariate polynomial
 $\begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} (5x_1^2 + 5x_2^2 + 8x_3^2) = 8x_1^2 + 5x_2^2 + 5x_3^2$

• $\sigma \in S_n$ acts as $\sigma.f(x_1, x_2, \dots, x_n) = f(x_{\sigma(1)}, x_{\sigma(2)}, \dots, x_{\sigma(n)})$

• Polynomials $f \in \mathbb{Q}[x_1, \ldots, x_n]$ satisfying $\sigma f = f$?

• Polynomials $f \in \mathbb{Q}[x_1, \ldots, x_n]$ satisfying $\sigma f = f$?

• Symmetric polynomials (n = 3)

$$e_1 = x_1 + x_2 + x_3 = h_1$$

$$e_2 = x_1 x_2 + x_1 x_3 + x_2 x_3 \quad h_2 = x_1^2 + x_1 x_2 + x_1 x_3 + x_2^2 + x_2 x_3 + x_3^2$$

$$e_3 = x_1 x_2 x_3 \quad h_3 = x_1^3 + x_1^2 x_2 + x_1^2 x_3 + x_1 x_2^2 + \cdots$$

• Polynomials $f \in \mathbb{Q}[x_1, \ldots, x_n]$ satisfying $\sigma f = f$?

• Symmetric polynomials (n = 3)

$$e_1 = x_1 + x_2 + x_3 = h_1$$

$$e_2 = x_1 x_2 + x_1 x_3 + x_2 x_3 \quad h_2 = x_1^2 + x_1 x_2 + x_1 x_3 + x_2^2 + x_2 x_3 + x_3^2$$

$$e_3 = x_1 x_2 x_3 \quad h_3 = x_1^3 + x_1^2 x_2 + x_1^2 x_3 + x_1 x_2^2 + \cdots$$

• $\{f \in \mathbb{Q}[x_1, \dots, x_n] \mid \sigma.f = f \ \forall \sigma \in S_n\}$ forms a vector space, $\Lambda_{\mathbb{Q}}$.

Combinatorics of Symmetric Polynomials

Generators

$$e_r = \sum_{i_1 < i_2 < \dots < i_r} x_{i_1} x_{i_2} \cdots x_{i_r} \text{ or } h_r = \sum_{i_1 \le i_2 \le \dots \le i_r} x_{i_1} x_{i_2} \cdots x_{i_r}$$

Generators

$$e_r = \sum_{i_1 < i_2 < \dots < i_r} x_{i_1} x_{i_2} \cdots x_{i_r} \text{ or } h_r = \sum_{i_1 \le i_2 \le \dots \le i_r} x_{i_1} x_{i_2} \cdots x_{i_r}$$

Symmetric functions are polynomials in the e_1, e_2, \ldots , or in the h_1, h_2, \ldots

$$3h_2h_1^2 - h_2^2 + 6h_3h_1 = 3h_{(211)} - h_{(22)} + 6h_{(31)}$$

Generators

$$e_r = \sum_{i_1 < i_2 < \dots < i_r} x_{i_1} x_{i_2} \cdots x_{i_r} \text{ or } h_r = \sum_{i_1 \le i_2 \le \dots \le i_r} x_{i_1} x_{i_2} \cdots x_{i_r}$$

Symmetric functions are polynomials in the e_1, e_2, \ldots , or in the h_1, h_2, \ldots

$$3h_2h_1^2 - h_2^2 + 6h_3h_1 = 3h_{(211)} - h_{(22)} + 6h_{(31)}$$

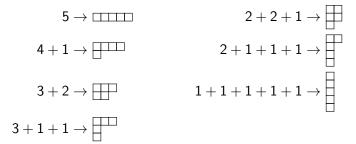
Basis of $\Lambda_{\mathbb{Q}}$?

Partitions

Definition

$n \in \mathbb{Z}_{>0}$, a partition of n is $\lambda = (\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_\ell > 0)$ such that $\lambda_1 + \lambda_2 + \cdots + \lambda_\ell = n$.

 $n \in \mathbb{Z}_{>0}$, a partition of n is $\lambda = (\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_\ell > 0)$ such that $\lambda_1 + \lambda_2 + \cdots + \lambda_\ell = n$.



Filling of partition diagram of λ with numbers such that

Filling of partition diagram of λ with numbers such that

strictly increasing down columns

Filling of partition diagram of λ with numbers such that

- strictly increasing down columns
- e weakly increasing along rows

Filling of partition diagram of λ with numbers such that

- strictly increasing down columns
- e weakly increasing along rows

Collection is called SSYT(λ).

Filling of partition diagram of λ with numbers such that

- strictly increasing down columns
- eakly increasing along rows

Collection is called SSYT(λ).

For $\lambda = (2, 1)$,

$$\begin{array}{c} 1 \\ 1 \\ 2 \\ \end{array}, \begin{array}{c} 1 \\ 3 \\ \end{array}, \begin{array}{c} 2 \\ 3 \\ \end{array}, \begin{array}{c} 2 \\ 2 \\ \end{array}, \begin{array}{c} 1 \\ 2 \\ \end{array}, \begin{array}{c} 2 \\ 3 \\ \end{array}, \begin{array}{c} 1 \\ 2 \\ \end{array}, \begin{array}{c} 2 \\ 3 \\ \end{array}, \begin{array}{c} 1 \\ 3 \\ \end{array}, \begin{array}{c} 2 \\ 3 \\ \end{array}, \begin{array}{c} 1 \\ 2 \\ 3 \\ \end{array}$$

Associate a polynomial to $SSYT(\lambda)$.

Associate a polynomial to SSYT(λ).

$$\begin{bmatrix} 1 & 1 \\ 2 & \\ 3 & \\ \end{bmatrix}, \begin{bmatrix} 2 & 2 \\ 3 & \\ 3 & \\ \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ 2 & \\ 3 & \\ 2 & \\ \end{bmatrix}, \begin{bmatrix} 1 & 3 \\ 3 & \\ 3 & \\ \end{bmatrix}, \begin{bmatrix} 2 & 3 \\ 3 & \\ 3 & \\ \end{bmatrix}, \begin{bmatrix} 1 & 3 \\ 2 & \\ 3 & \\ \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ 3 & \\ 3 & \\ \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ 3 & \\ 3 & \\ \end{bmatrix}, \begin{bmatrix} 1 & 3 \\ 2 & \\ 3 & \\ \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ 3 & \\ 3 & \\ \end{bmatrix}, \begin{bmatrix} 1 & 3 \\ 2 & \\ 3 & \\ \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ 3 & \\ 3 & \\ \end{bmatrix}, \begin{bmatrix} 1 & 3 \\ 2 & \\ 3 & \\ \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ 3 & \\ 3 & \\ \end{bmatrix}, \begin{bmatrix} 1 & 3 \\ 2 & \\ 3 & \\ \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ 3 & \\ 3 & \\ \end{bmatrix}, \begin{bmatrix} 1 & 3 \\ 2 & \\ 3 & \\ \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ 3 & \\ 3 & \\ \end{bmatrix}, \begin{bmatrix} 1 & 3 \\ 2 & \\ 3 & \\ \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ 3 & \\ 3 & \\ \end{bmatrix}, \begin{bmatrix} 1 & 3 \\ 2 & \\ 3 & \\ \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ 3 & \\ 3 & \\ \end{bmatrix}, \begin{bmatrix} 1 & 3 \\ 2 & \\ 3 & \\ \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ 3 & \\ 3 & \\ \end{bmatrix}, \begin{bmatrix} 1 & 3 \\ 2 & \\ 3 & \\ \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ 3 & \\ 3 & \\ \end{bmatrix}, \begin{bmatrix} 1 & 3 \\ 2 & \\ 3 & \\ \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ 3 & \\ 3 & \\ \end{bmatrix}, \begin{bmatrix} 1 & 3 \\ 2 & \\ 3 & \\ \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ 3 & \\ 3 & \\ \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ 3 & \\ 3 & \\ \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ 3 & \\ 1 & \\ \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ 3 & \\ 1 & \\ \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ 3 & \\ 1 & \\ 1 & \\ \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ 3 & \\ 1 & \\ 1 & \\ 1 & \\ \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ 3 & \\ 1$$

Associate a polynomial to SSYT(λ).

2 3 2 1 2 3 2 3 ۰<u>1</u> , 2 1 3 3 3 1 1 2 2 3 2 3 Weight: (2,1,0)(2,0,1)(0,2,1) (1,2,0)(1,0,2) (0,1,2) (1,1,1) (1,1,1)

Associate a polynomial to SSYT(λ).

 $s_{(21)}(x_1, x_2, x_3) = x_1^2 x_2 + x_1^2 x_3 + x_2^2 x_3 + x_1 x_2^2 + x_1 x_3^2 + x_2 x_3^2 + 2x_1 x_2 x_3$

Associate a polynomial to SSYT(λ).

 $s_{(21)}(x_1, x_2, x_3) = x_1^2 x_2 + x_1^2 x_3 + x_2^2 x_3 + x_1 x_2^2 + x_1 x_3^2 + x_2 x_3^2 + 2x_1 x_2 x_3$

Definition

For λ a partition

$$s_{\lambda} = \sum_{T \in SSYT(\lambda)} x^{T}$$
 for $x^{T} = \prod_{i \in T} x_{i}$

Associate a polynomial to SSYT(λ).

 1 1 1 1 2 1 2 1 3 2 1 3 2 3 1 3 1 2 3 1 3 1 2 3 1 3 1 2 3 1 3 2 3 1 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 3 2 3

 $s_{(21)}(x_1, x_2, x_3) = x_1^2 x_2 + x_1^2 x_3 + x_2^2 x_3 + x_1 x_2^2 + x_1 x_3^2 + x_2 x_3^2 + 2x_1 x_2 x_3$

Definition

For λ a partition

$$s_{\lambda} = \sum_{T \in \text{SSYT}(\lambda)} x^T \text{ for } x^T = \prod_{i \in T} x_i$$

• s_{λ} is a symmetric function

Associate a polynomial to SSYT(λ).

 $1 \\ 2 \\ 3 \\ 0.10 \\ 0.2.1 \\ 0$

 $s_{(21)}(x_1, x_2, x_3) = x_1^2 x_2 + x_1^2 x_3 + x_2^2 x_3 + x_1 x_2^2 + x_1 x_3^2 + x_2 x_3^2 + 2x_1 x_2 x_3$

Definition

For λ a partition

$$s_{\lambda} = \sum_{T \in \text{SSYT}(\lambda)} x^T \text{ for } x^T = \prod_{i \in T} x_i$$

- s_{λ} is a symmetric function
- \bullet Schur functions form a basis for $\Lambda_{\mathbb{Q}}$

George H. Seelinger (UMich)

Why Schur functions?

Harmonic polynomials

M = polynomials killed by all symmetric differential operators.

M = polynomials killed by all symmetric differential operators.

Explicitly, for

$$\Delta = \det \begin{vmatrix} x_1^2 & x_1 & 1 \\ x_2^2 & x_2 & 1 \\ x_3^2 & x_3 & 1 \end{vmatrix} = x_1^2(x_2 - x_3) - x_2^2(x_1 - x_3) + x_3^2(x_1 - x_2)$$

M = polynomials killed by all symmetric differential operators.

Explicitly, for

$$\Delta = \det egin{pmatrix} x_1^2 & x_1 & 1 \ x_2^2 & x_2 & 1 \ x_3^2 & x_3 & 1 \end{bmatrix} = x_1^2(x_2 - x_3) - x_2^2(x_1 - x_3) + x_3^2(x_1 - x_2)$$

M is the vector space given by

M = polynomials killed by all symmetric differential operators.

Explicitly, for

$$\Delta = \det \begin{vmatrix} x_1^2 & x_1 & 1 \\ x_2^2 & x_2 & 1 \\ x_3^2 & x_3 & 1 \end{vmatrix} = x_1^2(x_2 - x_3) - x_2^2(x_1 - x_3) + x_3^2(x_1 - x_2)$$

M is the vector space given by

$$\begin{split} \mathcal{M} &= \mathsf{sp} \left\{ \left(\partial_{x_1}^a \partial_{x_2}^b \partial_{x_3}^c \right) \Delta \mid a, b, c \ge 0 \right\} \\ &= \mathsf{sp} \{ \Delta, 2x_1(x_2 - x_3) - x_2^2 + x_3^2, 2x_2(x_3 - x_1) - x_3^2 + x_1^2, \\ &\quad x_3 - x_1, x_2 - x_3, 1 \} \end{split}$$

• S_3 action on M fixes vector subspaces!

 $\mathsf{sp}\{\Delta, 2x_1(x_2 - x_3) - x_2^2 + x_3^2, 2x_2(x_3 - x_1) - x_3^2 + x_1^2, x_3 - x_1, x_2 - x_3, 1\}$

- S_3 action on M fixes vector subspaces! sp{ Δ , $2x_1(x_2 - x_3) - x_2^2 + x_3^2$, $2x_2(x_3 - x_1) - x_3^2 + x_1^2$, $x_3 - x_1$, $x_2 - x_3$, 1}
- Break M up into smallest S_n fixed subspaces

•
$$S_3$$
 action on M fixes vector subspaces!
sp{ Δ , $2x_1(x_2 - x_3) - x_2^2 + x_3^2$, $2x_2(x_3 - x_1) - x_3^2 + x_1^2$, $x_3 - x_1$, $x_2 - x_3$, 1}

2 Break M up into smallest S_n fixed subspaces

$$\underbrace{\mathsf{sp}\{\Delta\}}_{\square} \oplus \underbrace{\mathsf{sp}\{2x_1(x_2-x_3)-x_2^2+x_3^2, 2x_2(x_3-x_1)-x_3^2+x_1^2\}}_{\square} \oplus \underbrace{\mathsf{sp}\{x_3-x_1, x_2-x_3\}}_{\square} \oplus \underbrace{\mathsf{sp}\{1\}}_{\square}$$

(

S₃ action on
$$M$$
 fixes vector subspaces!
sp{ Δ , 2 $x_1(x_2 - x_3) - x_2^2 + x_3^2$, 2 $x_2(x_3 - x_1) - x_3^2 + x_1^2$, $x_3 - x_1$, $x_2 - x_3$, 1}

2 Break M up into smallest S_n fixed subspaces

$$\underbrace{\mathsf{sp}\{\Delta\}}_{\square} \oplus \underbrace{\mathsf{sp}\{2x_1(x_2-x_3)-x_2^2+x_3^2, 2x_2(x_3-x_1)-x_3^2+x_1^2\}}_{\square} \oplus \underbrace{\mathsf{sp}\{x_3-x_1, x_2-x_3\}}_{\square} \oplus \underbrace{\mathsf{sp}\{1\}}_{\square}$$

3 How many times does an S_n fixed subspace occur?

(

S₃ action on
$$M$$
 fixes vector subspaces!
sp{ Δ , 2 $x_1(x_2 - x_3) - x_2^2 + x_3^2$, 2 $x_2(x_3 - x_1) - x_3^2 + x_1^2$, $x_3 - x_1$, $x_2 - x_3$, 1}

2 Break M up into smallest S_n fixed subspaces

$$\underbrace{\mathsf{sp}\{\Delta\}}_{\square} \oplus \underbrace{\mathsf{sp}\{2x_1(x_2-x_3)-x_2^2+x_3^2, 2x_2(x_3-x_1)-x_3^2+x_1^2\}}_{\square} \oplus \underbrace{\mathsf{sp}\{x_3-x_1, x_2-x_3\}}_{\square} \oplus \underbrace{\mathsf{sp}\{1\}}_{\square}$$

③ How many times does an S_n fixed subspace occur? Frobenius:

•
$$S_3$$
 action on M fixes vector subspaces!
sp{ Δ , $2x_1(x_2 - x_3) - x_2^2 + x_3^2$, $2x_2(x_3 - x_1) - x_3^2 + x_1^2$, $x_3 - x_1$, $x_2 - x_3$, 1}

2 Break M up into smallest S_n fixed subspaces

$$\underbrace{\mathsf{sp}\{\Delta\}}_{\square} \oplus \underbrace{\mathsf{sp}\{2x_1(x_2-x_3)-x_2^2+x_3^2, 2x_2(x_3-x_1)-x_3^2+x_1^2\}}_{\square} \oplus \underbrace{\mathsf{sp}\{x_3-x_1, x_2-x_3\}}_{\square} \oplus \underbrace{\mathsf{sp}\{1\}}_{\square}$$

(3) How many times does an S_n fixed subspace occur? Frobenius:

$$e_1^3 = (x_1 + x_2 + x_3)^3 = s_1 + s_1 + s_1 + s_1$$

S₃ action on
$$M$$
 fixes vector subspaces!
sp{ Δ , 2 $x_1(x_2 - x_3) - x_2^2 + x_3^2$, 2 $x_2(x_3 - x_1) - x_3^2 + x_1^2$, $x_3 - x_1$, $x_2 - x_3$, 1}

2 Break M up into smallest S_n fixed subspaces

$$\underbrace{\mathsf{sp}\{\Delta\}}_{\square} \oplus \underbrace{\mathsf{sp}\{2x_1(x_2-x_3)-x_2^2+x_3^2, 2x_2(x_3-x_1)-x_3^2+x_1^2\}}_{\square} \oplus \underbrace{\mathsf{sp}\{x_3-x_1, x_2-x_3\}}_{\square} \oplus \underbrace{\mathsf{sp}\{1\}}_{\square}$$

③ How many times does an S_n fixed subspace occur? Frobenius:

$$e_1^3 = (x_1 + x_2 + x_3)^3 = s_1 + s_1 + s_1 + s_1$$

Schur basis expansion counts multiplicity of irreducible S_n fixed subspaces!

George H. Seelinger (UMich)

• Combinatorics: Schur functions are weight generating functions of semistandard tableaux.

- Combinatorics: Schur functions are weight generating functions of semistandard tableaux.
- Algebra: Schur functions count multiplicity of irreducible S_n -fixed vector subspaces (representations).

- Combinatorics: Schur functions are weight generating functions of semistandard tableaux.
- Algebra: Schur functions count multiplicity of irreducible S_n -fixed vector subspaces (representations).

Upshot

Via Frobenius characteristic map, questions about S_n -representations get translated to questions about Schur expansion coefficients in symmetric functions.

- Combinatorics: Schur functions are weight generating functions of semistandard tableaux.
- Algebra: Schur functions count multiplicity of irreducible S_n -fixed vector subspaces (representations).

Upshot

Via Frobenius characteristic map, questions about S_n -representations get translated to questions about Schur expansion coefficients in symmetric functions.

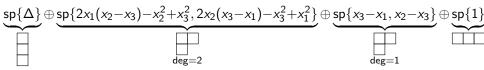
Does a symmetric function expand into Schur basis with nonnegative coefficients? Is there a combinatorial description for coefficients?

Getting more information

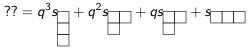
Break M up into smallest S_n fixed subspaces

$$\underbrace{\mathsf{sp}\{\Delta\}}_{\mathsf{deg}=2} \oplus \underbrace{\mathsf{sp}\{2x_1(x_2-x_3)-x_2^2+x_3^2, 2x_2(x_3-x_1)-x_3^2+x_1^2\}}_{\mathsf{deg}=1} \oplus \underbrace{\mathsf{sp}\{x_3-x_1, x_2-x_3\}}_{\mathsf{deg}=1} \oplus \underbrace{\mathsf{sp}\{1\}}_{\mathsf{deg}=1}$$

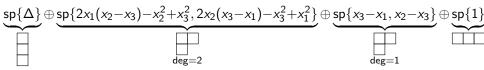
Break M up into smallest S_n fixed subspaces



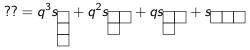
Solution: minimal S_n -fixed subspace of degree $d \mapsto q^d s_\lambda$ (graded Frobenius)



Break M up into smallest S_n fixed subspaces



Solution: minimal S_n -fixed subspace of degree $d \mapsto q^d s_\lambda$ (graded Frobenius)



Answer: "Hall-Littlewood polynomial" $H_{\Box}(X; q)$.

• In 1988, Macdonald introduces a family of symmetric polynomials with coefficients in $\mathbb{Q}(q, t)$ generalizing Hall-Littlewood polynomials.

- In 1988, Macdonald introduces a family of symmetric polynomials with coefficients in Q(q, t) generalizing Hall-Littlewood polynomials.
- Garsia modifies these polynomials so

$$ilde{\mathcal{H}}_\lambda(X;q,t) = \sum_\mu ilde{\mathcal{K}}(q,t) s_\mu$$
 conjecturally satisfies $ilde{\mathcal{K}}(q,t) \in \mathbb{N}[q,t]$

- In 1988, Macdonald introduces a family of symmetric polynomials with coefficients in Q(q, t) generalizing Hall-Littlewood polynomials.
- Garsia modifies these polynomials so

$$ilde{\mathcal{H}}_\lambda(X;q,t) = \sum_\mu ilde{\mathcal{K}}(q,t) s_\mu$$
 conjecturally satisfies $ilde{\mathcal{K}}(q,t) \in \mathbb{N}[q,t]$

• $\tilde{H}_{\lambda}(X;1,1) = e_1^{|\lambda|}$.

- In 1988, Macdonald introduces a family of symmetric polynomials with coefficients in Q(q, t) generalizing Hall-Littlewood polynomials.
- Garsia modifies these polynomials so

$$ilde{\mathcal{H}}_\lambda(X;q,t) = \sum_\mu ilde{\mathcal{K}}(q,t) s_\mu$$
 conjecturally satisfies $ilde{\mathcal{K}}(q,t) \in \mathbb{N}[q,t]$

- $ilde{H}_{\lambda}(X;1,1)=e_1^{|\lambda|}.$
- Does there exist a family of S_n -representations whose (bigraded) Frobenius characteristics equal $\tilde{H}_{\lambda}(X; q, t)$?

• $\mathbb{Q}[x_1, \ldots, x_n, y_1, \ldots, y_n]$ satisfying $\sigma(x_i) = x_{\sigma(i)}, \sigma(y_j) = y_{\sigma(j)}$.

- $\mathbb{Q}[x_1, \ldots, x_n, y_1, \ldots, y_n]$ satisfying $\sigma(x_i) = x_{\sigma(i)}, \sigma(y_j) = y_{\sigma(j)}$.
- Garsia-Haiman (1993): M_{μ} = span of partial derivatives of $\Delta_{\mu} = \det_{(i,j)\in\mu,k\in[n]}(x_k^{i-1}y_k^{j-1})$

- $\mathbb{Q}[x_1, \ldots, x_n, y_1, \ldots, y_n]$ satisfying $\sigma(x_i) = x_{\sigma(i)}, \sigma(y_j) = y_{\sigma(j)}$.
- Garsia-Haiman (1993): $M_{\mu} =$ span of partial derivatives of $\Delta_{\mu} = \det_{(i,j)\in\mu,k\in[n]}(x_k^{i-1}y_k^{j-1})$

$$\Delta = \det \begin{vmatrix} 1 & y_1 & x_1 \\ 1 & y_2 & x_2 \\ 1 & y_3 & x_3 \end{vmatrix} = x_3 y_2 - y_3 x_2 - y_1 x_3 + y_1 x_2 + y_3 x_1 - y_2 x_1$$

- $\mathbb{Q}[x_1, \ldots, x_n, y_1, \ldots, y_n]$ satisfying $\sigma(x_i) = x_{\sigma(i)}, \sigma(y_j) = y_{\sigma(j)}$.
- Garsia-Haiman (1993): $M_{\mu} =$ span of partial derivatives of $\Delta_{\mu} = \det_{(i,j) \in \mu, k \in [n]}(x_k^{i-1}y_k^{j-1})$

$$\Delta = \det \begin{vmatrix} 1 & y_1 & x_1 \\ 1 & y_2 & x_2 \\ 1 & y_3 & x_3 \end{vmatrix} = x_3 y_2 - y_3 x_2 - y_1 x_3 + y_1 x_2 + y_3 x_1 - y_2 x_1$$

$$M_{2,1} = \underbrace{sp\{\Delta_{2,1}\}}_{deg=(1,1)} \oplus \underbrace{sp\{y_3 - y_1, y_1 - y_2\}}_{deg=(0,1)} \oplus \underbrace{sp\{x_3 - x_1, x_1 - x_2\}}_{deg=(1,0)} \oplus \underbrace{sp\{1\}}_{deg=(0,0)}$$

- $\mathbb{Q}[x_1, \ldots, x_n, y_1, \ldots, y_n]$ satisfying $\sigma(x_i) = x_{\sigma(i)}, \sigma(y_j) = y_{\sigma(j)}$.
- Garsia-Haiman (1993): $M_{\mu} =$ span of partial derivatives of $\Delta_{\mu} = \det_{(i,j)\in\mu,k\in[n]}(x_k^{i-1}y_k^{j-1})$

$$\Delta = \det \begin{vmatrix} 1 & y_1 & x_1 \\ 1 & y_2 & x_2 \\ 1 & y_3 & x_3 \end{vmatrix} = x_3 y_2 - y_3 x_2 - y_1 x_3 + y_1 x_2 + y_3 x_1 - y_2 x_1$$

$$M_{2,1} = \underbrace{sp\{\Delta_{2,1}\}}_{deg=(1,1)} \oplus \underbrace{sp\{y_3 - y_1, y_1 - y_2\}}_{deg=(0,1)} \oplus \underbrace{sp\{x_3 - x_1, x_1 - x_2\}}_{deg=(1,0)} \oplus \underbrace{sp\{1\}}_{deg=(0,0)}$$

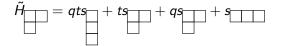
Irreducible S_n -representation with bidegree $(a, b) \mapsto q^a t^b s_\lambda$

- $\mathbb{Q}[x_1, \ldots, x_n, y_1, \ldots, y_n]$ satisfying $\sigma(x_i) = x_{\sigma(i)}, \sigma(y_j) = y_{\sigma(j)}$.
- Garsia-Haiman (1993): $M_{\mu} =$ span of partial derivatives of $\Delta_{\mu} = \det_{(i,j)\in\mu,k\in[n]}(x_k^{i-1}y_k^{j-1})$

$$\Delta = \det \begin{vmatrix} 1 & y_1 & x_1 \\ 1 & y_2 & x_2 \\ 1 & y_3 & x_3 \end{vmatrix} = x_3 y_2 - y_3 x_2 - y_1 x_3 + y_1 x_2 + y_3 x_1 - y_2 x_1$$

$$M_{2,1} = \underbrace{sp\{\Delta_{2,1}\}}_{deg=(1,1)} \oplus \underbrace{sp\{y_3 - y_1, y_1 - y_2\}}_{deg=(0,1)} \oplus \underbrace{sp\{x_3 - x_1, x_1 - x_2\}}_{deg=(1,0)} \oplus \underbrace{sp\{1\}}_{deg=(0,0)}$$

Irreducible S_n -representation with bidegree $(a, b) \mapsto q^a t^b s_\lambda$



The Garsia-Haiman module M_{λ} has bigraded Frobenius characteristic given by $\tilde{H}_{\lambda}(X; q, t)$

The Garsia-Haiman module M_{λ} has bigraded Frobenius characteristic given by $\tilde{H}_{\lambda}(X; q, t)$

• Proved via geometric connection to the Hilbert Scheme $Hilb^n(\mathbb{C}^2)$.

The Garsia-Haiman module M_{λ} has bigraded Frobenius characteristic given by $\tilde{H}_{\lambda}(X;q,t)$

• Proved via geometric connection to the Hilbert Scheme $Hilb^n(\mathbb{C}^2)$.

Corollary

$$ilde{\mathcal{H}}_{\lambda}(X;q,t) = \sum_{\mu} ilde{\mathcal{K}}_{\lambda\mu}(q,t) s_{\mu} ext{ satisfies } ilde{\mathcal{K}}_{\lambda\mu}(q,t) \in \mathbb{N}[q,t].$$

The Garsia-Haiman module M_{λ} has bigraded Frobenius characteristic given by $\tilde{H}_{\lambda}(X;q,t)$

• Proved via geometric connection to the Hilbert Scheme $Hilb^n(\mathbb{C}^2)$.

Corollary

$$ilde{\mathcal{H}}_{\lambda}(X;q,t) = \sum_{\mu} ilde{\mathcal{K}}_{\lambda\mu}(q,t) s_{\mu} ext{ satisfies } ilde{\mathcal{K}}_{\lambda\mu}(q,t) \in \mathbb{N}[q,t].$$

• No combinatorial description of $\tilde{K}_{\lambda\mu}(q,t)$. (Still open!)

Observation

All of these Garsia-Haiman modules are contained in the module of diagonal harmonics:

$$DH_n = \operatorname{sp}\{f \in \mathbb{C}[x_1, \dots, x_n, y_1, \dots, y_n] \mid \left(\sum_{j=1}^n \partial_{x_j}^r \partial_{y_j}^s\right) f = 0, \forall r+s > 0\}$$

Observation

All of these Garsia-Haiman modules are contained in the module of diagonal harmonics:

$$DH_n = \operatorname{sp}\{f \in \mathbb{C}[x_1, \dots, x_n, y_1, \dots, y_n] \mid \left(\sum_{j=1}^n \partial_{x_j}^r \partial_{y_j}^s\right) f = 0, \forall r+s > 0\}$$

Question

What symmetric function is the bigraded Frobenius characteristic of DH_n ?

$$=\frac{t^{3}\tilde{H}_{1,1,1}}{-qt^{2}+t^{3}+q^{2}-qt}-\frac{(q^{2}t+qt^{2}+qt)\tilde{H}_{2,1}}{-q^{2}t^{2}+q^{3}+t^{3}-qt}-\frac{q^{3}\tilde{H}_{3}}{-q^{3}+q^{2}t+qt-t^{2}}$$

$$=\frac{t^{3}\tilde{H}_{1,1,1}}{-qt^{2}+t^{3}+q^{2}-qt}-\frac{(q^{2}t+qt^{2}+qt)\tilde{H}_{2,1}}{-q^{2}t^{2}+q^{3}+t^{3}-qt}-\frac{q^{3}\tilde{H}_{3}}{-q^{3}+q^{2}t+qt-t^{2}}$$

Compare to

$$e_{3} = \frac{\tilde{H}_{1,1,1}}{-qt^{2}+t^{3}+q^{2}-qt} - \frac{(q+t+1)\tilde{H}_{2,1}}{-q^{2}t^{2}+q^{3}+t^{3}-qt} - \frac{\tilde{H}_{3}}{-q^{3}+q^{2}t+qt-t^{2}}$$

$$=\frac{t^{3}\tilde{H}_{1,1,1}}{-qt^{2}+t^{3}+q^{2}-qt}-\frac{(q^{2}t+qt^{2}+qt)\tilde{H}_{2,1}}{-q^{2}t^{2}+q^{3}+t^{3}-qt}-\frac{q^{3}\tilde{H}_{3}}{-q^{3}+q^{2}t+qt-t^{2}}$$

Compare to

$$e_{3} = \frac{\tilde{H}_{1,1,1}}{-qt^{2}+t^{3}+q^{2}-qt} - \frac{(q+t+1)\tilde{H}_{2,1}}{-q^{2}t^{2}+q^{3}+t^{3}-qt} - \frac{\tilde{H}_{3}}{-q^{3}+q^{2}t+qt-t^{2}}$$

Operator ∇

$$abla ilde{\mathcal{H}}_{\lambda}(X;q,t) = q^{n(\lambda)} t^{n(\lambda')} ilde{\mathcal{H}}_{\lambda}(X;q,t)$$

George H. Seelinger (UMich)

$$=\frac{t^{3}\tilde{H}_{1,1,1}}{-qt^{2}+t^{3}+q^{2}-qt}-\frac{(q^{2}t+qt^{2}+qt)\tilde{H}_{2,1}}{-q^{2}t^{2}+q^{3}+t^{3}-qt}-\frac{q^{3}\tilde{H}_{3}}{-q^{3}+q^{2}t+qt-t^{2}}$$

Compare to

$$e_{3} = \frac{\tilde{H}_{1,1,1}}{-qt^{2}+t^{3}+q^{2}-qt} - \frac{(q+t+1)\tilde{H}_{2,1}}{-q^{2}t^{2}+q^{3}+t^{3}-qt} - \frac{\tilde{H}_{3}}{-q^{3}+q^{2}t+qt-t^{2}}$$

Operator ∇

$$abla ilde{\mathcal{H}}_{\lambda}(X;q,t) = q^{n(\lambda)} t^{n(\lambda')} ilde{\mathcal{H}}_{\lambda}(X;q,t)$$

Theorem (Haiman, 2002)

The bigraded Frobenius characteristic of DH_n is given by ∇e_n .

George H. Seelinger (UMich)

Dens, Nests, and Catalanimals

$$abla e_k(X) = \sum_{\lambda} t^{\mathsf{area}(\lambda)} q^{\mathsf{dinv}(\lambda)} \omega \mathcal{G}_{
u(\lambda)}(X;q^{-1})$$

• Conjectured by (Haiman-Haglund-Loehr-Remmel-Ulyanov, 2002).

$$abla e_k(X) = \sum_{\lambda} t^{\operatorname{area}(\lambda)} q^{\operatorname{dinv}(\lambda)} \omega \mathcal{G}_{
u(\lambda)}(X;q^{-1})$$

- Conjectured by (Haiman-Haglund-Loehr-Remmel-Ulyanov, 2002).
- Combinatorial RHS: Combinatorics of Dyck paths.

$$abla e_k(X) = \sum_{\lambda} t^{\operatorname{area}(\lambda)} q^{\operatorname{dinv}(\lambda)} \omega \mathcal{G}_{
u(\lambda)}(X;q^{-1})$$

- Conjectured by (Haiman-Haglund-Loehr-Remmel-Ulyanov, 2002).
- Combinatorial RHS: Combinatorics of Dyck paths.
- Summation over all *k*-by-*k* Dyck paths.

$$abla e_k(X) = \sum_{\lambda} t^{\operatorname{area}(\lambda)} q^{\operatorname{dinv}(\lambda)} \omega \mathcal{G}_{
u(\lambda)}(X;q^{-1})$$

- Conjectured by (Haiman-Haglund-Loehr-Remmel-Ulyanov, 2002).
- Combinatorial RHS: Combinatorics of Dyck paths.
- Summation over all *k*-by-*k* Dyck paths.
- area(λ) and dinv(λ) statistics of Dyck paths.

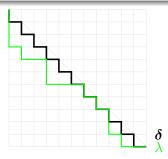
$$abla e_k(X) = \sum_{\lambda} t^{\operatorname{area}(\lambda)} q^{\operatorname{dinv}(\lambda)} \omega \mathcal{G}_{
u(\lambda)}(X;q^{-1})$$

- Conjectured by (Haiman-Haglund-Loehr-Remmel-Ulyanov, 2002).
- Combinatorial RHS: Combinatorics of Dyck paths.
- Summation over all *k*-by-*k* Dyck paths.
- area(λ) and dinv(λ) statistics of Dyck paths.
- G_{ν(λ)}(X; q) a symmetric LLT polynomial indexed by a tuple of offset rows.

Dyck paths

Dyck paths

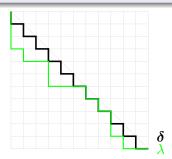
A Dyck path λ is a south-east lattice path lying below the line segment from (0, k) to (k, 0).



Dyck paths

Dyck paths

A Dyck path λ is a south-east lattice path lying below the line segment from (0, k) to (k, 0).

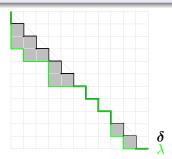


• area(λ) = number of squares above λ but below the path δ of alternating S-E steps.

Dyck paths

Dyck paths

A Dyck path λ is a south-east lattice path lying below the line segment from (0, k) to (k, 0).

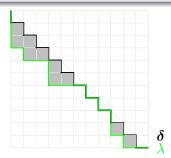


- area (λ) = number of squares above λ but below the path δ of alternating S-E steps.
- E.g., above area $(\lambda) = 10$.

Dyck paths

Dyck paths

A Dyck path λ is a south-east lattice path lying below the line segment from (0, k) to (k, 0).



- area(λ) = number of squares above λ but below the path δ of alternating S-E steps.
- E.g., above area $(\lambda) = 10$.
- Catalan-number many Dyck paths for fixed k.

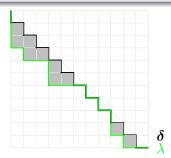
George H. Seelinger (UMich)

Dens, Nests, and Catalanimals

Dyck paths

Dyck paths

A Dyck path λ is a south-east lattice path lying below the line segment from (0, k) to (k, 0).

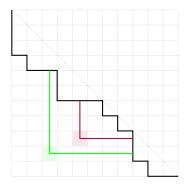


- area (λ) = number of squares above λ but below the path δ of alternating S-E steps.
- E.g., above area $(\lambda) = 10$.
- Catalan-number many Dyck paths for fixed k. (1,2,5,14,42,...)

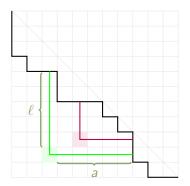
George H. Seelinger (UMich)

Dens, Nests, and Catalanimals

dinv(λ) =# of balanced hooks in diagram below λ .



dinv(λ) =# of balanced hooks in diagram below λ .



Balanced hook is given by a cell below λ satisfying

$$\frac{\ell}{a+1} < 1-\epsilon < \frac{\ell+1}{a}\,, \quad \epsilon \text{ small}.$$

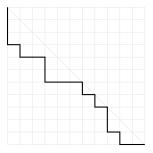
• $\mathcal{G}_{\nu}(X;q)$ is a symmetric function

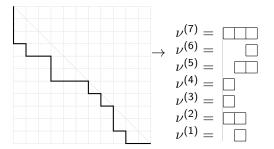
- $\mathcal{G}_{\nu}(X;q)$ is a symmetric function
- $\mathcal{G}_{\nu}(X;1) = s_{\nu^{(1)}} \cdots s_{\nu^{(r)}}$

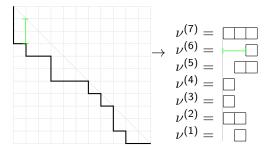
- $\mathcal{G}_{\nu}(X;q)$ is a symmetric function
- $\mathcal{G}_{\nu}(X;1) = s_{\nu^{(1)}} \cdots s_{\nu^{(r)}}$
- \mathcal{G}_{ν} were originally defined by Lascoux, Leclerc, and Thibon to explore connections to Fock space representations of $U_q(\hat{\mathfrak{sl}}_r)$

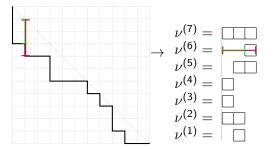
- $\mathcal{G}_{\nu}(X;q)$ is a symmetric function
- $\mathcal{G}_{\nu}(X;1) = s_{\nu^{(1)}} \cdots s_{\nu^{(r)}}$
- \mathcal{G}_{ν} were originally defined by Lascoux, Leclerc, and Thibon to explore connections to Fock space representations of $U_q(\hat{\mathfrak{sl}}_r)$
- When $\nu^{(i)}$ are partitions, the Schur-expansion coefficients are essentially parabolic Kazdhan-Luzstig polynomials.

- $\mathcal{G}_{\nu}(X;q)$ is a symmetric function
- $\mathcal{G}_{\nu}(X;1) = s_{\nu^{(1)}} \cdots s_{\nu^{(r)}}$
- G_ν were originally defined by Lascoux, Leclerc, and Thibon to explore connections to Fock space representations of U_q(ŝl_r)
- When $\nu^{(i)}$ are partitions, the Schur-expansion coefficients are essentially parabolic Kazdhan-Luzstig polynomials.
- G_{ν} is Schur-positive for any tuple of skew shapes ν [Grojnowski-Haiman, 2007].









$$\mathcal{G}_{
u}(X;q) = \sum_{T\in \mathsf{SSYT}(
u)} q^{i(T)} x^T$$

$$\mathcal{G}_{
u}(X;q) = \sum_{\mathcal{T} \in \mathsf{SSYT}(
u)} q^{i(\mathcal{T})} x^{\mathcal{T}}$$



$$\mathcal{G}_{
u}(X;q) = \sum_{\mathcal{T} \in \mathsf{SSYT}(
u)} q^{i(\mathcal{T})} x^{\mathcal{T}}$$

$$T = \frac{12335}{2447899} \rightarrow q^{i(T)}x^{T} = q^{18}x_{1}^{3}x_{2}^{2}x_{3}^{2}x_{4}^{2}x_{5}x_{6}x_{7}^{4}x_{8}x_{9}^{2}$$

$$\mathcal{G}_{
u}(X; q) = \sum_{T \in \mathsf{SSYT}(
u)} q^{i(T)} x^T$$

$$\lambda \quad q^{\mathrm{dinv}(\lambda)}t^{\mathrm{area}(\lambda)} \quad q^{\mathrm{dinv}(\lambda)}t^{\mathrm{area}(\lambda)}\mathcal{G}_{\nu(\lambda)}(X;q^{-1})$$

$$\lambda \quad q^{\operatorname{dinv}(\lambda)}t^{\operatorname{area}(\lambda)} \quad q^{\operatorname{dinv}(\lambda)}t^{\operatorname{area}(\lambda)}\mathcal{G}_{
u(\lambda)}(X;q^{-1})$$

$$\lambda \quad q^{\operatorname{dinv}(\lambda)} t^{\operatorname{area}(\lambda)} \quad q^{\operatorname{dinv}(\lambda)} t^{\operatorname{area}(\lambda)} \mathcal{G}_{\nu(\lambda)}(X; q^{-1})$$

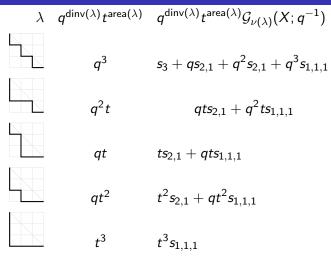
$$q^{3}$$

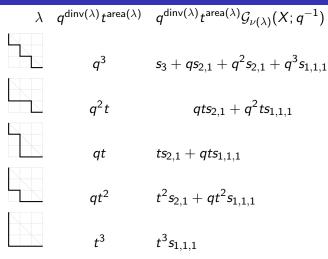
$$q^{2}t$$

$$qt$$

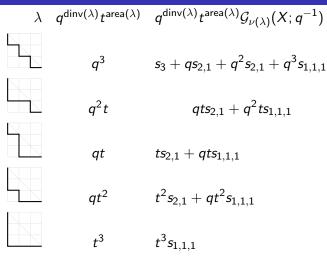
$$qt^{2}$$

$$t^{3}$$





• Entire quantity is q, t-symmetric



- Entire quantity is q, t-symmetric
- Coefficient of $s_{1,1,1}$ in sum is a "(q, t)-Catalan number" $(q^3 + q^2t + qt + qt^2 + t^3)$.

George H. Seelinger (UMich)

When a problem is too difficult, try generalizing!

When a problem is too difficult, try generalizing!

Algebraic Expression Combinatorial Expression $\nabla e_k(X) = \sum q, t$ -weighted Dyck paths

When a problem is too difficult, try generalizing!

Algebraic Expression Combinatorial Expression $\nabla e_k(X) = \sum q$, t-weighted Dyck paths

Rational Shuffle Conjecture (F. Bergeron, Garsia, Sergel Leven, Xin, 2016) (Proved by Mellit, 2016)

For m, n coprime, the operator $e_k[-MX^{m,n}]$ acting on Λ satisfies

 $e_k[-MX^{m,n}] \cdot 1 = \sum q$, t-weighted (km, kn)-Dyck paths

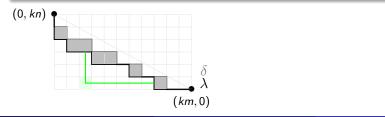
When a problem is too difficult, try generalizing!

Algebraic Expression Combinatorial Expression $\nabla e_k(X) = \sum q$, t-weighted Dyck paths

Rational Shuffle Conjecture (F. Bergeron, Garsia, Sergel Leven, Xin, 2016) (Proved by Mellit, 2016)

For m, n coprime, the operator $e_k[-MX^{m,n}]$ acting on Λ satisfies

 $e_k[-MX^{m,n}]\cdot 1 = \sum q$, t-weighted (km, kn)-Dyck paths



• The operators $e_k[-MX^{m,n}]$ arise from an action of *Schiffmann* algebra \mathcal{E} on Λ .

- The operators $e_k[-MX^{m,n}]$ arise from an action of Schiffmann algebra \mathcal{E} on Λ .
- \mathcal{E} contains subalgebra $\Lambda(X^{m,n}) \cong \Lambda$ for each coprime pair $(m, n) \in \mathbb{Z}^2$.

- The operators $e_k[-MX^{m,n}]$ arise from an action of Schiffmann algebra \mathcal{E} on Λ .
- \mathcal{E} contains subalgebra $\Lambda(X^{m,n}) \cong \Lambda$ for each coprime pair $(m, n) \in \mathbb{Z}^2$.
- In general, *E*-action can be a pain to compute in a nice way, but sometimes it is nice!

Fix $l \in \mathbb{Z}_{>0}$. Let $R_+ = \{(i,j) \mid 1 \le i < j \le l\}$.

Fix
$$l \in \mathbb{Z}_{>0}$$
. Let $R_+ = \{(i,j) \mid 1 \leq i < j \leq l\}$.

Definition

For subsets $R_q, R_t, R_{qt} \subseteq R_+$ and $\gamma \in \mathbb{Z}^l$, a *Catalanimal* $H = H(R_q, R_t, R_{qt}, \gamma)(z_1, \dots, z_l; q, t)$ is a symmetric rational function

Fix
$$l \in \mathbb{Z}_{>0}$$
. Let $R_+ = \{(i,j) \mid 1 \leq i < j \leq l\}$.

Definition

For subsets $R_q, R_t, R_{qt} \subseteq R_+$ and $\gamma \in \mathbb{Z}^l$, a *Catalanimal* $H = H(R_q, R_t, R_{qt}, \gamma)(z_1, \dots, z_l; q, t)$ is a symmetric rational function

$$\sum_{w \in S_l} w \left(\frac{z_1^{\gamma_1} \cdots z_l^{\gamma_l} \prod_{(i,j) \in R_q} (1 - qtz_i/z_j)}{\prod_{(i,j) \in R_+} (1 - z_j/z_i) \prod_{(i,j) \in R_q} (1 - qz_i/z_j) \prod_{(i,j) \in R_t} (1 - tz_i/z_j)} \right)$$

Fix
$$l \in \mathbb{Z}_{>0}$$
. Let $R_+ = \{(i,j) \mid 1 \leq i < j \leq l\}$.

Definition

For subsets $R_q, R_t, R_{qt} \subseteq R_+$ and $\gamma \in \mathbb{Z}^l$, a *Catalanimal* $H = H(R_q, R_t, R_{qt}, \gamma)(z_1, \dots, z_l; q, t)$ is a symmetric rational function

$$\sum_{w \in S_l} w \left(\frac{z_1^{\gamma_1} \cdots z_l^{\gamma_l} \prod_{(i,j) \in R_q} (1 - qtz_i/z_j)}{\prod_{(i,j) \in R_+} (1 - z_j/z_i) \prod_{(i,j) \in R_q} (1 - qz_i/z_j) \prod_{(i,j) \in R_t} (1 - tz_i/z_j)} \right)$$

• Can also be thought of as an infinite series of virtual GL_I -characters.

Fix
$$l \in \mathbb{Z}_{>0}$$
. Let $R_+ = \{(i,j) \mid 1 \leq i < j \leq l\}$.

Definition

For subsets $R_q, R_t, R_{qt} \subseteq R_+$ and $\gamma \in \mathbb{Z}^l$, a *Catalanimal* $H = H(R_q, R_t, R_{qt}, \gamma)(z_1, \dots, z_l; q, t)$ is a symmetric rational function

$$\sum_{w \in S_l} w \left(\frac{z_1^{\gamma_1} \cdots z_l^{\gamma_l} \prod_{(i,j) \in R_{qt}} (1 - qtz_i/z_j)}{\prod_{(i,j) \in R_+} (1 - z_j/z_i) \prod_{(i,j) \in R_q} (1 - qz_i/z_j) \prod_{(i,j) \in R_t} (1 - tz_i/z_j)} \right)$$

- Can also be thought of as an infinite series of virtual GL_I -characters.
- We can take "polynomial part" (restrict to only polynomial *GL*₁-characters) to get a symmetric function.

Welcome to the Zoo: Catalanimals

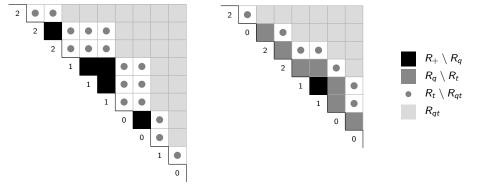
• Visual representations of Catalanimals are less scary.

Welcome to the Zoo: Catalanimals

- Visual representations of Catalanimals are less scary.
- Assume $R_{qt} \subseteq R_t \subseteq R_q \subseteq R_+$:

Welcome to the Zoo: Catalanimals

- Visual representations of Catalanimals are less scary.
- Assume $R_{qt} \subseteq R_t \subseteq R_q \subseteq R_+$:



• Sometimes, there exists $\xi \in \mathcal{E}$ such that $\xi \cdot 1 = \omega \operatorname{pol}_X H$.

• Sometimes, there exists $\xi \in \mathcal{E}$ such that $\xi \cdot 1 = \omega \operatorname{pol}_X H$. (!!!)

- Sometimes, there exists $\xi \in \mathcal{E}$ such that $\xi \cdot 1 = \omega \operatorname{pol}_X H$. (!!!)
- When $R_{qt} \subseteq [R_q, R_t]$, then this happens. (Associated H is *tame*.)

- Sometimes, there exists $\xi \in \mathcal{E}$ such that $\xi \cdot 1 = \omega \operatorname{pol}_X H$. (!!!)
- When $R_{qt} \subseteq [R_q, R_t]$, then this happens. (Associated H is tame.)
- When, H is (m, n)-cuddly (a set of inequalities on root sets and weight), there exists an f ∈ Λ such that f[-MX^{m,n}] · 1 = ω pol_X H (up to q, t-monomial and sign).

- Sometimes, there exists $\xi \in \mathcal{E}$ such that $\xi \cdot 1 = \omega \operatorname{pol}_X H$. (!!!)
- When $R_{qt} \subseteq [R_q, R_t]$, then this happens. (Associated H is tame.)
- When, H is (m, n)-cuddly (a set of inequalities on root sets and weight), there exists an f ∈ Λ such that f[-MX^{m,n}] · 1 = ω pol_X H (up to q, t-monomial and sign).
- In this case, we set cub(H) = f.

- Sometimes, there exists $\xi \in \mathcal{E}$ such that $\xi \cdot 1 = \omega \operatorname{pol}_X H$. (!!!)
- When $R_{qt} \subseteq [R_q, R_t]$, then this happens. (Associated H is tame.)
- When, H is (m, n)-cuddly (a set of inequalities on root sets and weight), there exists an f ∈ Λ such that f[-MX^{m,n}] · 1 = ω pol_X H (up to q, t-monomial and sign).
- In this case, we set cub(H) = f.
- The cuddly conditions allow a nice coproduct formula for f[X + Y] in terms of cubs of "restrictions" of H.

Cuddly Catalanimals with cub e_k

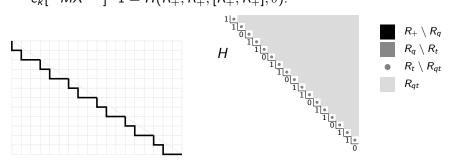
• $H(R_+, R_+, [R_+, R_+], (1^k))$ is (1, 1)-cuddly with cub e_k .

Cuddly Catalanimals with cub e_k

- $H(R_+, R_+, [R_+, R_+], (1^k))$ is (1, 1)-cuddly with cub e_k .
- More generally, if δ is the sequence of south step runs of highest path under the line through (0, kn) to (km, 0), then $e_k[-MX^{m,n}] \cdot 1 = H(R_+, R_+, [R_+, R_+], \delta).$

Cuddly Catalanimals with cub e_k

- $H(R_+, R_+, [R_+, R_+], (1^k))$ is (1, 1)-cuddly with cub e_k .
- More generally, if δ is the sequence of south step runs of highest path under the line through (0, kn) to (km, 0), then
 e_k[-MX^{m,n}] · 1 = H(R₊, R₊, [R₊, R₊], δ).



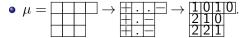
 $\delta = (1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0)$ and $e_6[-MX^{3,2}]\cdot 1 = \omega \operatorname{pol}_X H$

1, 1-Cuddly Catalanimals with cub s_{μ}

• Can construct root sets and weight from the content diagonals of μ .

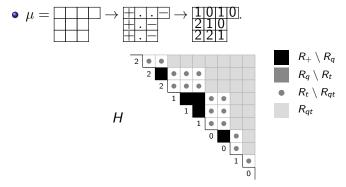
1, 1-Cuddly Catalanimals with cub s_{μ}

• Can construct root sets and weight from the content diagonals of μ .



1, 1-Cuddly Catalanimals with cub s_{μ}

• Can construct root sets and weight from the content diagonals of μ .



 $s_{\mu}[-MX^{1,1}] \cdot 1 = \nabla s_{\mu} = \omega \operatorname{pol}_{X} H$ (up to q, t-monomial)

For every partition μ and coprime positive integers m, n, we have

$$egin{aligned} &s_\mu[-MX^{m,n}]\cdot 1\ &=(-1)^{p(\mu)}(qt)^{p(\mu)+m\sum_{i=1}^h\binom{\gamma_i}{2}}\sum_\pi t^{\operatorname{area}(\pi)}q^{\operatorname{dinv}_p(\pi)}\omega\mathcal{G}_{
u(\pi)}(X;q^{-1}) \end{aligned}$$

• Combinatorial RHS: Over all *nests* π in a *den* associated to μ and *m*, *n*.

For every partition μ and coprime positive integers m, n, we have

$$egin{aligned} &s_{\mu}[-MX^{m,n}]\cdot 1\ &=(-1)^{p(\mu)}(qt)^{p(\mu)+m\sum_{i=1}^{h}{\gamma_i\choose 2}}\sum_{\pi}t^{\mathsf{area}(\pi)}q^{\mathsf{dinv}_p(\pi)}\omega\mathcal{G}_{
u(\pi)}(X;q^{-1}) \end{aligned}$$

- Combinatorial RHS: Over all *nests* π in a *den* associated to μ and *m*, *n*.
- Conjectured by Loehr-Warrington (2008) when n = 1 with different combinatorics (but bijectively related).

For every partition μ and coprime positive integers m, n, we have

$$\begin{split} s_{\mu}[-MX^{m,n}] \cdot 1 \\ &= (-1)^{p(\mu)} (qt)^{p(\mu)+m\sum_{i=1}^{h} \binom{\gamma_i}{2}} \sum_{\pi} t^{\mathsf{area}(\pi)} q^{\mathsf{dinv}_{p}(\pi)} \omega \mathcal{G}_{\nu(\pi)}(X;q^{-1}) \end{split}$$

 $\mu =$

Theorem (Blasiak-Haiman-Morse-Pun-S. (2021⁺))

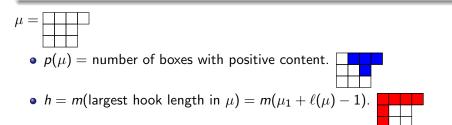
For every partition μ and coprime positive integers m, n, we have

$$egin{aligned} &s_{\mu}[-MX^{m,n}]\cdot 1\ &=(-1)^{p(\mu)}(qt)^{p(\mu)+m\sum_{i=1}^{h}inom{\gamma_{i}}{2}}\sum_{\pi}t^{ ext{area}(\pi)}q^{ ext{dinv}_{p}(\pi)}\omega\mathcal{G}_{
u(\pi)}(X;q^{-1}) \end{aligned}$$

• $p(\mu) =$ number of boxes with positive content.

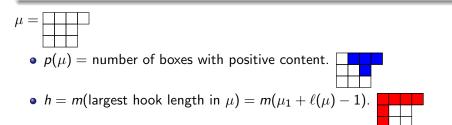
For every partition μ and coprime positive integers m, n, we have

$$egin{aligned} &s_{\mu}[-MX^{m,n}]\cdot 1\ &=(-1)^{p(\mu)}(qt)^{p(\mu)+m\sum_{i=1}^{h}{\gamma_i\choose 2}}\sum_{\pi}t^{ ext{area}(\pi)}q^{ ext{dinv}_p(\pi)}\omega\mathcal{G}_{
u(\pi)}(X;q^{-1}) \end{aligned}$$



For every partition μ and coprime positive integers m, n, we have

$$egin{aligned} &s_{\mu}[-MX^{m,n}]\cdot 1\ &=(-1)^{p(\mu)}(qt)^{p(\mu)+m\sum_{i=1}^{h}{\gamma_i\choose 2}}\sum_{\pi}t^{ ext{area}(\pi)}q^{ ext{dinv}_p(\pi)}\omega\mathcal{G}_{
u(\pi)}(X;q^{-1}) \end{aligned}$$



For every partition μ and coprime positive integers m, n, we have

$$\begin{split} s_{\mu}[-MX^{m,n}] \cdot 1 \\ &= (-1)^{p(\mu)} (qt)^{p(\mu)+m\sum_{i=1}^{h} \binom{\gamma_i}{2}} \sum_{\pi} t^{\operatorname{area}(\pi)} q^{\operatorname{dinv}_{p}(\pi)} \omega \mathcal{G}_{\nu(\pi)}(X;q^{-1}) \end{split}$$

• $\gamma(\mu)$ is the tuple of the sizes of content diagonals.

 $\mu =$

For every partition μ and coprime positive integers m, n, we have

$$\begin{split} s_{\mu}[-MX^{m,n}] \cdot 1 \\ &= (-1)^{p(\mu)} (qt)^{p(\mu)+m\sum_{i=1}^{h} \binom{\gamma_i}{2}} \sum_{\pi} t^{\operatorname{area}(\pi)} q^{\operatorname{dinv}_{p}(\pi)} \omega \mathcal{G}_{\nu(\pi)}(X;q^{-1}) \end{split}$$

 $\mu = \square$ • $\gamma(\mu)$ is the tuple of the sizes of content diagonals. • $\mu = \square$ • $\gamma = (1, 2, 3, 2, 1, 1)$.

• $\delta_i(\lambda) = \chi(\lambda_1 - 1 - i \text{ is the content of the last box of some row of } \lambda)$

• $\delta_i(\lambda) = \chi(\lambda_1 - 1 - i \text{ is the content of the last box of some row of } \lambda)$ • $\mu = \underbrace{1}_{1 \to 0} \underbrace{3}_{1 \to 0} \Rightarrow \delta(\mu) = (1, 0, 1, 1, 0, 0, \ldots)$

δ_i(λ) = χ(λ₁ − 1 − i is the content of the last box of some row of λ)
μ = ↓ 3 ⇒ δ(μ) = (1, 0, 1, 1, 0, 0, ...)
ε_i(λ) = χ(i ≥ λ₁)

• $\delta_i(\lambda) = \chi(\lambda_1 - 1 - i \text{ is the content of the last box of some row of } \lambda)$ • $\mu = \underbrace{1}_{0} \xrightarrow{3} \Longrightarrow \delta(\mu) = (1, 0, 1, 1, 0, 0, \ldots)$ • $\epsilon_i(\lambda) = \chi(i \ge \lambda_1)$ • $\mu = \underbrace{1}_{0} \xrightarrow{} \longleftrightarrow (\mu) = (0, 0, 0, 0, 1, 1, \ldots)$

To construct a (simplified) den,

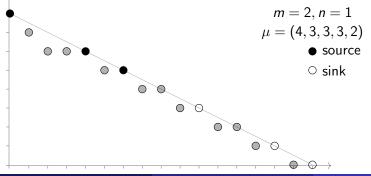
• Draw the line connecting $(0, \frac{n}{m}h)$ and (h, 0)

- Draw the line connecting $(0, \frac{n}{m}h)$ and (h, 0)
- ⁽²⁾ Relationship between δ and ϵ tell us where to place a lattice point on each vertical, (weakly) below the line.

- Draw the line connecting $(0, \frac{n}{m}h)$ and (h, 0)
- 2 Relationship between δ and ϵ tell us where to place a lattice point on each vertical, (weakly) below the line.
- Solution If $\delta_i(\mu) > \epsilon_i(\mu)$, lattice point on x = im is a source.

- Draw the line connecting $(0, \frac{n}{m}h)$ and (h, 0)
- ⁽²⁾ Relationship between δ and ϵ tell us where to place a lattice point on each vertical, (weakly) below the line.
- If $\delta_i(\mu) > \epsilon_i(\mu)$, lattice point on x = im is a source.
- Similarly, $\delta_i(\mu) < \epsilon_i(\mu) \Longrightarrow$ point on x = im is a sink.

- Draw the line connecting $(0, \frac{n}{m}h)$ and (h, 0)
- 2 Relationship between δ and ϵ tell us where to place a lattice point on each vertical, (weakly) below the line.
- If $\delta_i(\mu) > \epsilon_i(\mu)$, lattice point on x = im is a source.
- Similarly, $\delta_i(\mu) < \epsilon_i(\mu) \Longrightarrow$ point on x = im is a sink.



• Number the sources left to right and the sinks right to left.

- Number the sources left to right and the sinks right to left.
- A nest is a collection of east end lattice paths (π⁽¹⁾,...,π^(r)) that lie weakly below the marked lattice points.

- Number the sources left to right and the sinks right to left.
- A nest is a collection of east end lattice paths (π⁽¹⁾,...,π^(r)) that lie weakly below the marked lattice points.
- Each $\pi^{(i)}$ begins with a south step, starting at source *i*, and ends with an east step into sink *i*.

- Number the sources left to right and the sinks right to left.
- A nest is a collection of east end lattice paths (π⁽¹⁾,...,π^(r)) that lie weakly below the marked lattice points.
- Each $\pi^{(i)}$ begins with a south step, starting at source *i*, and ends with an east step into sink *i*.
- Each $\pi^{(i)}$ is nested below $\pi^{(i+1)}$.

- Number the sources left to right and the sinks right to left.
- A nest is a collection of east end lattice paths (π⁽¹⁾,...,π^(r)) that lie weakly below the marked lattice points.
- Each π⁽ⁱ⁾ begins with a south step, starting at source i, and ends with an east step into sink i.
- Each $\pi^{(i)}$ is nested below $\pi^{(i+1)}$.
 - The interval of x-coordinates of $\pi^{(i+1)}$ is contained in the interval of x-coordinates of $\pi^{(i)}$.

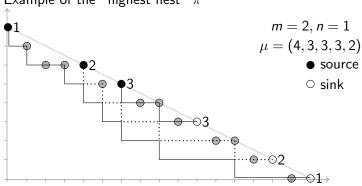
- Number the sources left to right and the sinks right to left.
- A nest is a collection of east end lattice paths (π⁽¹⁾,...,π^(r)) that lie weakly below the marked lattice points.
- Each π⁽ⁱ⁾ begins with a south step, starting at source i, and ends with an east step into sink i.
- Each $\pi^{(i)}$ is nested below $\pi^{(i+1)}$.
 - The interval of x-coordinates of $\pi^{(i+1)}$ is contained in the interval of x-coordinates of $\pi^{(i)}$.
 - Top of a south run of $\pi^{(i+1)}$ strictly above the top of a south run of $\pi^{(i)}$ on same vertical.

- Number the sources left to right and the sinks right to left.
- A nest is a collection of east end lattice paths (π⁽¹⁾,...,π^(r)) that lie weakly below the marked lattice points.
- Each $\pi^{(i)}$ begins with a south step, starting at source *i*, and ends with an east step into sink *i*.
- Each $\pi^{(i)}$ is nested below $\pi^{(i+1)}$.
 - The interval of x-coordinates of $\pi^{(i+1)}$ is contained in the interval of x-coordinates of $\pi^{(i)}$.
 - Top of a south run of $\pi^{(i+1)}$ strictly above the top of a south run of $\pi^{(i)}$ on same vertical.
 - Bottom of a south run of $\pi^{(i)}$ strictly below the bottom of a south run of $\pi^{(i+1)}$ on same vertical.

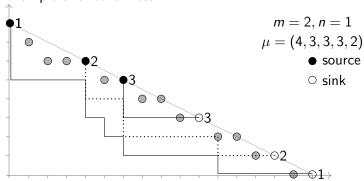
- Number the sources left to right and the sinks right to left.
- A nest is a collection of east end lattice paths (π⁽¹⁾,...,π^(r)) that lie weakly below the marked lattice points.
- Each $\pi^{(i)}$ begins with a south step, starting at source *i*, and ends with an east step into sink *i*.
- Each $\pi^{(i)}$ is nested below $\pi^{(i+1)}$.
 - The interval of x-coordinates of $\pi^{(i+1)}$ is contained in the interval of x-coordinates of $\pi^{(i)}$.
 - Top of a south run of $\pi^{(i+1)}$ strictly above the top of a south run of $\pi^{(i)}$ on same vertical.
 - Bottom of a south run of $\pi^{(i)}$ strictly below the bottom of a south run of $\pi^{(i+1)}$ on same vertical.

 π'

 π



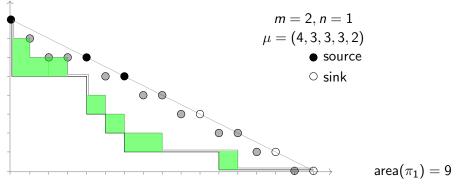
Example of the "highest nest" π^0



Example of another nest.

area $(\pi) = \sum_{i=1}^{r} \operatorname{area}(\pi_i)$ where area $(\pi_i) =$ number of lattice squares between π_i and π_i^0 .

area $(\pi) = \sum_{i=1}^{r} \operatorname{area}(\pi_i)$ where area $(\pi_i) =$ number of lattice squares between π_i and π_i^0 .



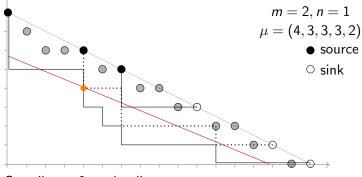
• For $p = \frac{n}{m} - \epsilon \in \mathbb{R} \setminus \mathbb{Q}$ and ϵ small, $\operatorname{dinv}_{p}(\pi) = \#\{(P, i, S, j)\}$ where

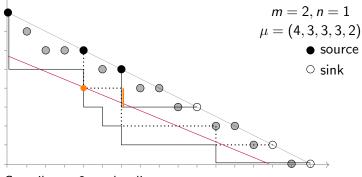
• For $p = \frac{n}{m} - \epsilon \in \mathbb{R} \setminus \mathbb{Q}$ and ϵ small, $\operatorname{dinv}_p(\pi) = \#\{(P, i, S, j)\}$ where

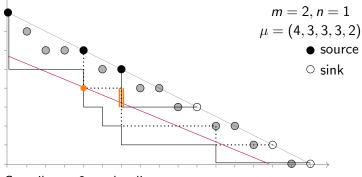
- *P* is a non-sink lattice point in π_i
- S is a south step in π_j
- *P* is strictly to the left of *S*
- A line of slope -p passing through P passes through S.

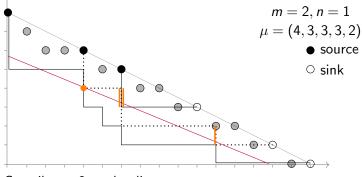
• For $p = \frac{n}{m} - \epsilon \in \mathbb{R} \setminus \mathbb{Q}$ and ϵ small, $\operatorname{dinv}_p(\pi) = \#\{(P, i, S, j)\}$ where

- *P* is a non-sink lattice point in π_i
- S is a south step in π_i
- *P* is strictly to the left of *S*
- A line of slope -p passing through P passes through S.









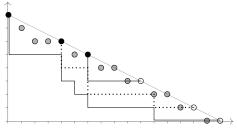
• Each vertical line x = i will give a skew partition.

- Each vertical line x = i will give a skew partition.
- South steps of each path will contribute a row.

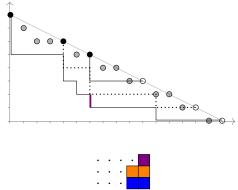
- Each vertical line x = i will give a skew partition.
- South steps of each path will contribute a row.
- Content determined by how far down south step is from highest lattice point under the line + j for π_j .

- Each vertical line x = i will give a skew partition.
- South steps of each path will contribute a row.
- Content determined by how far down south step is from highest lattice point under the line + j for π_j .
- Tuple ordered by how far marked lattice points are from slight perturbation of line.

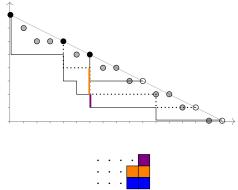
- Each vertical line x = i will give a skew partition.
- South steps of each path will contribute a row.
- Content determined by how far down south step is from highest lattice point under the line + j for π_j .
- Tuple ordered by how far marked lattice points are from slight perturbation of line.



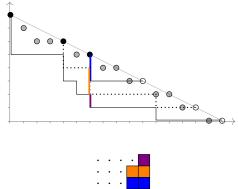
- Each vertical line x = i will give a skew partition.
- South steps of each path will contribute a row.
- Content determined by how far down south step is from highest lattice point under the line + j for π_j .
- Tuple ordered by how far marked lattice points are from slight perturbation of line.



- Each vertical line x = i will give a skew partition.
- South steps of each path will contribute a row.
- Content determined by how far down south step is from highest lattice point under the line + j for π_j .
- Tuple ordered by how far marked lattice points are from slight perturbation of line.



- Each vertical line x = i will give a skew partition.
- South steps of each path will contribute a row.
- Content determined by how far down south step is from highest lattice point under the line + j for π_j .
- Tuple ordered by how far marked lattice points are from slight perturbation of line.



In our paper, we provide a more general definition of den as a tuple of data (h, p, d, e) ∈ Z_{>0} × (ℝ \ Q) × Z^{h+1} × Z^{h+1} subject to some conditions.

- In our paper, we provide a more general definition of den as a tuple of data (h, p, d, e) ∈ Z_{>0} × (ℝ \ Q) × Z^{h+1} × Z^{h+1} subject to some conditions.
- To each den we can associate a tame Catalanimal *H* and give a corresponding shuffle theorem as a sum over the nests of the den.

- In our paper, we provide a more general definition of den as a tuple of data (h, p, d, e) ∈ Z_{>0} × (ℝ \ Q) × Z^{h+1} × Z^{h+1} subject to some conditions.
- To each den we can associate a tame Catalanimal *H* and give a corresponding shuffle theorem as a sum over the nests of the den.
- These results hold "stably." In other words, a stronger result is proven before applying polynomial truncation.

- In our paper, we provide a more general definition of den as a tuple of data (h, p, d, e) ∈ Z_{>0} × (ℝ \ Q) × Z^{h+1} × Z^{h+1} subject to some conditions.
- To each den we can associate a tame Catalanimal *H* and give a corresponding shuffle theorem as a sum over the nests of the den.
- These results hold "stably." In other words, a stronger result is proven before applying polynomial truncation.
- This allows us to simultaneously generalize the $s_{\lambda}[-MX^{m,n}]$ formula and our "shuffle theorem for paths under any line" formula (BHMPS).

 For each LLT polynomial G_ν and coprime (m, n) with m > 0, an m, n-cuddly Catalanimal with cub G_ν is given. (BHMPS)

- For each LLT polynomial \mathcal{G}_{ν} and coprime (m, n) with m > 0, an m, n-cuddly Catalanimal with cub \mathcal{G}_{ν} is given. (BHMPS)
- Special cases include Schur functions and Hall-Littlewood polynomials.

- For each LLT polynomial G_ν and coprime (m, n) with m > 0, an m, n-cuddly Catalanimal with cub G_ν is given. (BHMPS)
- Special cases include Schur functions and Hall-Littlewood polynomials.
- Unicorn Catalanimals (or Catalan functions) where R_t = R_{qt} = Ø also have a rich (older) results and combinatorics, but served as inspiration. (Chen-Haiman, Blasiak-Morse-Pun-Summers, Blasiak-Morse-Pun)

• Is there a representation-theoretic model for ∇s_{μ} ? For any Catalanimal associated to a den?

- Is there a representation-theoretic model for ∇s_{μ} ? For any Catalanimal associated to a den?
- Any direct combinatorial formula (even a conjecture) for the Schur-expansion coefficients?

- Is there a representation-theoretic model for ∇s_{μ} ? For any Catalanimal associated to a den?
- Any direct combinatorial formula (even a conjecture) for the Schur-expansion coefficients?
- What other families of symmetric functions can be represented by Catalanimals?

- Is there a representation-theoretic model for ∇s_{μ} ? For any Catalanimal associated to a den?
- Any direct combinatorial formula (even a conjecture) for the Schur-expansion coefficients?
- What other families of symmetric functions can be represented by Catalanimals? Upcoming: Macdonald polynomials

- Is there a representation-theoretic model for ∇s_{μ} ? For any Catalanimal associated to a den?
- Any direct combinatorial formula (even a conjecture) for the Schur-expansion coefficients?
- What other families of symmetric functions can be represented by Catalanimals? Upcoming: Macdonald polynomials
- What connections do Catalanimals have with machinery used to prove other shuffle theorems, such as work by Carlsson-Mellit?

Thank you for visiting!

Bergeron, Francois, Adriano Garsia, Emily Sergel Leven, and Guoce Xin. 2016. *Compositional* (*km*, *kn*)-*shuffle conjectures*, Int. Math. Res. Not. IMRN **14**, 4229–4270, DOI 10.1093/imrn/rnv272. MR3556418

Blasiak, Jonah, Mark Haiman, Jennifer Morse, Anna Pun, and George H. Seelinger. 2021a. A Shuffle Theorem for Paths Under Any Line, arXiv e-prints, available at arXiv:2102.07931.

_____. 2021b. Dens, nests and the Loehr-Warrington conjecture, arXiv e-prints, available at arXiv:2112.07070.

______. 2021c. LLT polynomials in the Schiffmann algebra, arXiv e-prints, available at arXiv:2112.07063.

Burban, Igor and Olivier Schiffmann. 2012. *On the Hall algebra of an elliptic curve, I*, Duke Math. J. **161**, no. 7, 1171–1231, DOI 10.1215/00127094-1593263. MR2922373

Carlsson, Erik and Anton Mellit. 2018. A proof of the shuffle conjecture, J. Amer. Math. Soc. 31, no. 3, 661–697, DOI 10.1090/jams/893. MR3787405

Garsia, Adriano M. and Mark Haiman. 1993. *A graded representation model for Macdonald's polynomials*, Proc. Nat. Acad. Sci. U.S.A. **90**, no. 8, 3607–3610, DOI 10.1073/pnas.90.8.3607. MR1214091

Grojnowski, Ian and Mark Haiman. 2007. Affine Hecke algebras and positivity of LLT and Macdonald polynomials, Unpublished manuscript.

Haglund, J. and Haiman, M. and Loehr. 2005. *A combinatorial formula for the character of the diagonal coinvariants*, Duke Math. J. **126**, no. 2, 195–232, DOI 10.1215/S0012-7094-04-12621-1.

Haiman, Mark. 2001. *Hilbert schemes, polygraphs and the Macdonald positivity conjecture*, J. Amer. Math. Soc. **14**, no. 4, 941–1006, DOI 10.1090/S0894-0347-01-00373-3. MR1839919

_____. 2002. Vanishing theorems and character formulas for the Hilbert scheme of points in the plane, Invent. Math. **149**, no. 2, 371–407, DOI 10.1007/s002220200219. MR1918676

Lascoux, Alain, Bernard Leclerc, and Jean-Yves Thibon. 1995. *Ribbon tableaux, Hall-Littlewood functions and unipotent varieties*, Sém. Lothar. Combin. **34**, Art. B34g, approx. 23. MR1399754

Loehr, Nicholas A. and Gregory S. Warrington. 2008. *Nested quantum Dyck paths and* $\nabla(s_{\lambda})$, Int. Math. Res. Not. IMRN **5**, Art. ID rnm 157, 29, DOI 10.1093/imrn/rnm157. MR2418288

Mellit, Anton. 2016. Toric braids and (m, n)-parking functions, arXiv e-prints, arXiv:1604.07456, available at arXiv:1604.07456.

Negut, Andrei. 2014. The shuffle algebra revisited, Int. Math. Res. Not. IMRN 22, 6242–6275, DOI 10.1093/imrn/rnt156. MR3283004