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© Background on symmetric functions and Macdonald
polynomials
@ Shuffle theorems, combinatorics, and LLT polynomials

© A new formula for Macdonald polynomials
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e Ais a Q(q,t)-algebra.
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Bases for symmetric functions

Dimension of degree d symmetric functions? Number of partitions of d.

Definition

n € Zso, a partition of niis A = (A1 > Ao > -+ > Ay > 0) such that
AM+X+--+ X =n

5 — [T 2+2+1 -

44+1—-Hm 2+1+4+1+1—H

11

3+2 - Hh 1+14+1+14+1-
341410

= any basis of symmetric functions is indexed by partitions.
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Definition

Filling of partition diagram of A with numbers such that
© strictly increasing up columns
© weakly increasing along rows

Collection is called SSYT(\).

For A = (2,1),

2 3] B [ Bl B 21 3
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Polynomials from tableaux

Associate a polynomial to SSYT(\).
21 31 B [2]  [3]_ [3] 2 3
1[1] [1[1] [2]2] [1[2] [113] [2]3] [1]3] [1]2]

)

S2,1)(x1, X2, x3) = x2xo + XZx3 4 X3x3 + x1x5 + X1X5 + XoX3 + 2X1X2X3

Definition

For A\ a partition

S\ = E x! forxT:Hx;

TESSYT()) ieT

@ s) is a symmetric function.

o {s\}, forms a basis for Ag.
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Frobenius charactersitc, Frob: Rep(S,) — A.
@ lIrreducible representations of S,, are labeled by partitions of n.
@ Irreducible S,-representation V/ has Frob(V)) = sy
o U=V & W = Frob(U) = Frob(V) + Frob(W)
o Indg™:’s (V x W) s Frob(V) - Frob(W)
@ Upshot: S,-representations go to symmetric functions in structure
preserving way.

Hidden Guide: Schur Positivity

“Naturally occurring” symmetric functions which are non-negative
(coefficients in N) linear combinations in Schur polynomial basis are
interesting since they could have representation-theoretic models.
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Explicitly, for
X12 xp 1
A=det|x3 x 1| =xt(a—x3)—x3(x1 —x3) +x3(x1 — x2)
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M is the vector space given by
M =sp { (8;318)’(’28;3) Ala b,c> O}
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Harmonic polynomials

sp{A,2x1(x2 — x3) — x22 + X32, 2xp(x3 — x1) — x32 + X12,X3 — x1,x2 — x3,1}

@ Break M up into irreducible S,-representations.

sp{A} @ sp{2x1(xa—x3) x5 +x3, 2x2(x3—x1)—x34x7 } ® sp{x3—x1, xo—x3} D sp{1}
—— ~——

i il i

@ How many times does an irreducible S,-representation occur?
Frobenius:

613=(X1+X2+X3)3=s§+saj+saj+m

Remark: M = (C[Xl,X2,X3]/((C[X1,X2,X3]i3) is a “regular representation.”
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Getting more information

Break M up into smallest S, fixed subspaces

sp{A} @ sp{2x1 (xo—x3)—x3+X3, 2x2(x3—x1) —Xa4x7 } D sp{xz—x1, x2—x3} ® sp{1}
—— ——

E EE 5 O

deg=2 deg=1

Solution: irreducible S,-representation of polynomials of degree d — g9sy
(graded Frobenius)

7= q3E+ q25:|_|+ qS:|_I+5D]j

Answer: Hall-Littlewood polynomial HE(X; q).
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A Problem

@ In 1988, Macdonald introduces one basis of symmetric polynomials to
rule them all!

e Coefficients in Q(q, t), specializations give Hall-Littlewood
polynomials, Schur polynomials, and many other famous bases.

@ Defined by orthogonality and triangularity under a certain
inner-product.

@ Garsia modifies these polynomials so

Hy(X;q,t) = Z K(q, t)s, conjecturally satisfies K(q,t) € N[q, t]
o

o A\(X;1,1) = e‘l)".
@ Does there exist a family of S,-regular representations whose bigraded
Frobenius characteristics equal H\(X; g, t)?
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© Qx1,. s Xny Y1, -+, Yol With o(xi) = X5(iy, 0(¥)) = Yo(j)-
e Garsia-Haiman (1993): M,, = span of partial derivatives of
i—1, j-1
Ay = det(ijyepnem (X Ve )

1 yviox
AB] =det|l y» Xxo| =X3y2 — y3Xo — y1X3 + y1X2 + y3X1 — yox1
1 y3 x3

Mo 1 =sp{A21} ®sp{ys — y1,¥1 — y2} ®sp{x3 — x1,x1 —xo} @ sp{l}
—_—— ~ ——
deg=(1,1) deg=(0,1) deg=(1,0) deg=(0,0)

Irreducible S,-representation with bidegree (a, b) — g7t’sy

FIE‘:I:nt+ts:|_l+qs:|_l+m
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Garsia-Haiman modules

Theorem (Haiman, 2001)

The Garsia-Haiman module M has bigraded Frobenius characteristic
given by H)\(X; q,t)

@ Proved via connection to the Hilbert Scheme Hilb"(C?).

Hy(X;q,t) = > Kxu(q, t)s, satisfies Kyu(q, t) € N[q, t].

@ No combinatorial description of RAM(q, t).
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Observation

All of these Garsia-Haiman modules are contained in the module of
diagonal harmonics:

DH, = sp{f € Cxa, .., xn, y1,-- .yl | | D 0505 | f=0,Yr+s>0}
j=1

v

What symmetric function is the bigraded Frobenius characteristic of DH,,?
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Ve,

Frobenius characteristic of DH3

__ Bfaa (P+attat)fhy q°Fs
- —qt2+f3+q2—qt _q2t2+q3+t3_qt —q3+q2t+qt—t2
Compare to
o2 — Fhia . (q+t+1)Fa 1 o Hs
3 — —qt?+t3+q2—qt —q2t2f P +t3—qt @3 rq2t+qt—t2

Operator V
VH)\(X q, t) n()\ n()\ )H)\(X q, )a
where n(A) = > ".(i — 1)\; and A* is the transpose partition to A.

Theorem (Haiman, 2002)
The bigraded Frobenius characteristic of DH,, is given by Ve,.
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Symmetric function Representation theory = Combinatorics

s\ (X) Irreducible V) SSYT(A)
Hx(X;q,t) Garsia-Haiman M, 7
Ve, DH, Shuffle theorem
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Key Object: LLT Polynomials

Let v = (v(1), - - -, Y(k)) be a tuple of skew shapes. (Skew shape = A\ 1)
@ The content of a box in row y, column x is x — y.

@ Reading order. label boxes by, ..., b, by scanning each diagonal from
southwest to northeast, in order of increasing content.

® A pair (a,b) € v is attacking if a precedes b in reading order and

e content(b) = content(a), or
o content(b) = content(a) + 1 and a € v(;), b € vy with i > j.
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Key Object: LLT Polynomials

Let v = (v(1), - - -, Y(k)) be a tuple of skew shapes. (Skew shape = A\ 1)
@ The content of a box in row y, column x is x — y.

@ Reading order. label boxes by, ..., b, by scanning each diagonal from
southwest to northeast, in order of increasing content.

® A pair (a,b) € v is attacking if a precedes b in reading order and

e content(b) = content(a), or
o content(b) = content(a) + 1 and a € v(;), b € vy with i > j.

bs| bs

”:< |,} > =

bi| b>
by | by

Attacking pairs: (b, b3), (b3, ba), (ba, bs), (ba, be), (bs, br), (be, b7), (b7. bs)
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LLT Polynomials

@ A semistandard tableau on v is a map T: v — Z, which restricts to a
semistandard tableau on each ;).

@ An attacking inversion in T is an attacking pair (a, b) such
that T(a) > T(b).

The LLT polynomial indexed by a tuple of skew shapes v is
Gu(xiq)= > q™TxT,

TEeSSYT(v)

where inv(T) is the number of attacking inversions in T and x” = [],.,, x7(a)-

6
1)1

inversion

315

inv(T) =4, x" =xZxx3xaxexs
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LLT Polynomials G, (X; q)

e G,(X;q) is a symmetric function

° Gu(Xi1)=s,0) S,

@ G, were originally defined by Lascoux, Leclerc, and Thibon to explore
connections to Fock space representations of Ug(sl,)

o When /() are partitions, the Schur-expansion coefficients are
essentially parabolic Kazdhan-Luzstig polynomials.

@ G, is Schur-positive for any tuple of skew shapes v
[Grojnowski-Haiman, 2007].
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A Combinatorial Connection: Shuffle Theorem

Theorem (Carlsson-Mellit, 2018)

Ver(X) = Z e gdinvNug, ) (X g7
A

@ Summation over all k-by-k Dyck paths.
@ area(\) and dinv(\) statistics of Dyck paths.

® G,(n)(X; q) a symmetric LLT polynomial indexed by a tuple of offset
(skew) rows.

@ w an automorphism of symmetric functions: w(sy) = sy« for A* =
transpose of \.

e Conjectured by (Haiman-Haglund-Loehr-Remmel-Ulyanov, 2002).
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Dyck paths

A Dyck path ) is a south-east lattice path lying below the line segment

from (0, k) to (k,0).

Sl

@ area(\) = number of squares above A but below the path ¢ of
alternating S-E steps.

e E.g., above area(\) = 10.

e Catalan-number many Dyck paths for fixed k. (1,2,5,14,42,...)
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1L
EErENEEN

Balanced hook is given by a cell below A satisfying

4
a+1

+1
<l—e<——, esmall
a
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A v garea(n)  dinv()) garea(n) WGy (X; g
q s3+qse1 + q252,1 + CI351,1,1
g%t qtsz 1 + q° ts1,1,1

tsp1 +qtsi11

2 2
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Example Ve;

A qdinv()\) tarea()\) qdinv()\) tarea(/\)wgl/()\) (X; qfl)

LI_L q° s3+gsa1+ %1+ s
LL ¢t qtsz1 + q°tsi 11
1 qt tsp1 +qts1 11

Ll; qt? 2551 + qt’s111

L t3 t3$1,1,1

@ Entire quantity is g, t-symmetric
o Coefficient of 5111 in sum is a “(q, t)-Catalan number”
(¢% + ¢°t + gt + gt + t3).
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Generalizing Shuffle Theorem

When a problem is too difficult, try generalizing!

Algebraic Expression Combinatorial Expression
Vex(X) =3 g, t-weighted Dyck paths

Rational Shuffle Conjecture (F. Bergeron, Garsia, Sergel Leven, Xin,

2016) (Proved by Mellit, 2021)

For m, n > 0 coprime, the operator e,((m’") acting on A satisfies

el((m,n) 1= Z q, t-weighted (km, kn)-Dyck paths

(0, kn) I»
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& comes from algebraic geometry

central
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£ subalgebra @ _
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Algebra &€ ~ A = symmetric polynomials A

& comes from algebraic geometry

A(0,—1)
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subalgebra .
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Elliptic Hall Algebra

AODALI)A(2,3)
Algebra &€ ~ A = symmetric polynomials A

& comes from algebraic geometry

A(0,—1)

£~ central @ @ Am.n) Amn) & symmetric

subalgebra .
& m,n coprime pOIynomlaIs

1,1)

LHS of Shuffle Theorem = e,E e AL acting on 1 € A.
LHS of Rational Shuffle Theorem = e,((m’") e Almn) acting on 1 € A.

Can be difficult to work with in general. Can we make it more explicit?



Root ideals

Ry = {a,-j [1<i<j< n} denotes the set of positive roots for GL,,
where Qjj = €j — €.




Root ideals

Ry = {a,-j [1<i<j< n} denotes the set of positive roots for GL,,
where Qjj = €j — €.

A root ideal W C Ry is an upper order ideal of positive roots.

(12

45

VW = Roots above Dyck path
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Schur functions revisited

@ Convention: hg =1 and hy = 0 for d < 0.
e Forany v =(71,...,7vn) € Z", set

sy = det(hy,4j-i)1<ij<n

Then, s, = %5y or 0 for some partition \.
Precisely, for p=(n—1,n—2,...,1,0),

. _ sen(Y + p)Ssort(v4+p)—p If 7+ p has distinct nonnegative parts,
K 0 otherwise,

@ sort() = weakly decreasing sequence obtained by sorting £,
@ sgn(f3) = sign of the shortest permutation taking 3 to sort(f).
Example: So01 = 0, S52-11 = —5200-
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linearly extending
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Weyl symmetrization

Define the Weyl symmetrization operator o: Q[z, ..., zFY] — A(X) by
linearly extending
z7 = s5,(X)

2

where 27 = z/* - Z)".

111 , 201 , 210 , ,3-11\ _ _
o(z" 4+ 27 + 270+ 27) = s111 4 5001 + 210+ 53-11 = S111 + 5210 — S300
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Catalanimals

Definition
The Catalanimal indexed by Ry, Ry, Rg € Ry and A\ € Z" is

Z)\ il = qtza
H(RQ7 Rt; th, )\) = a’( HCMGth ( ) ) ’

HaeRq (1 o qzo‘) HaeRt (1 B tza)

where z% = z;/z; and (1 — tz;/z;) ™ = 1+ tz;/z + tzz,?/zjz 4.

With n = 3,
2111 — gtz / z3)
H(Ry, Ry, {a13}, (111)) = o )
H1§i<j§3(1 —9zi/z)(1 — tz;/z)
=si1+(q+t+ >+ gt + t))so1 + (gt + ¢° + ¢°t + qt® + )3
= wVe3.




Let Ry = {a; |1<i<j<Itand RO ={aj € R, |i+1<j}.



Why?

Let Ry = {aj |1<i<j<I}and RO ={aj € Ry |i+1<}.

Proposition

For (m, n) € Z2 coprime,

el(<m’n) 1= H(R+7 R—i—v R—?—vb)

forb = (by, ..., bxm—1) satisfying b; = the number of south steps on
vertical line x = i of highest lattice path under line y + = x = n.

6 = highest Dyck path.

5 b=1(1,1,0,1,0,1,0,1,0,1,0)



Manipulating Catalanimal = a proof of the Rational Shuffle Theorem +
a generalization.

Theorem (Blasiak-Haiman-Morse-Pun-S., 2023a)

Given r,s € R-g such that p = s/r irrational, take b = (by,..., b)) € Z!
to be the south step sequence of highest path § under the line y + px = s.
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Manipulating Catalanimal = a proof of the Rational Shuffle Theorem +
a generalization.

Theorem (Blasiak-Haiman-Morse-Pun-S., 2023a)

Given r,s € R-g such that p = s/r irrational, take b = (by,..., b)) € Z!
to be the south step sequence of highest path § under the line y + px = s.
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where summation is over all lattice paths under the line y 4+ px = s,




Manipulating Catalanimal = a proof of the Rational Shuffle Theorem +
a generalization.

Theorem (Blasiak-Haiman-Morse-Pun-S., 2023a)

Given r,s € R-g such that p = s/r irrational, take b = (by,..., b)) € Z!
to be the south step sequence of highest path § under the line y + px = s.

H(R:, Ry, R, b) = Z 122 gdimve (NG, 00 (X g71)

where summation is over all lattice paths under the line y 4+ px = s,

\ area(\) as before
dinv,(A) = #p-balanced hooks - < p < ”1
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Why stop at e,((m’")?

For which symmetric functions f can we find a Catalanimal such that
£(mn) .1 = a Catalanimal?

Answer: for f equal to any LLT polynomial!

Special case: G&Y -1 = VG (X; q).
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LLT Catalanimals

For a tuple of skew shapes v, the LLT Catalanimal H, = H(Rq, Rt, Rgt, )
is determined by

° R+2Rq2Rt2thr
Ry \ Rq = pairs of boxes in the same diagonal in the same shape,

°
® Ry \ R: = the attacking pairs,

@ R:\ Rq: = pairs going between adjacent diagonals,
°

A: fill each diagonal D of v with
1+ x(D contains a row start) — x(D contains a row end).
Listing this filling in reading order gives .
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A, as a filling of v




LLT Catalanimals

Theorem (Blasiak-Haiman-Morse-Pun-S., 2021+)

Let v be a tuple of skew shapes and let H, = H(Rq, R¢, Rqt, \) be the
associated LLT Catalanimal. Then

vgu(X; q) = wH,

—c wo_( 2 HaGth (1 —qt za) )
. HaeRq (1 o qza) ]-_-[O!ERt (1 B tza)

for some ¢, € +q”t”.
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What about Macdonald polynomials?!

@ Remember VI:IH = q”(“)t”(“*)lrlu.
@ We have a formula for VG,,.
o Does there exist formula H, = 3", a,.,(q, t)Gy 7 Yes!



@ Background on symmetric functions and Macdonald polynomials
@ Shuffle theorems, combinatorics, and LLT polynomials

© A new formula for Macdonald polynomials



Haglund-Haiman-Loehr formula example

(X a,8) = Ep (Tlep ™) G ,.0)(X; q)



Haglund-Haiman-Loehr formula example

(X 4.t) = Xp ([Tuep ™) Gy, 0)(X 9)

b
by | b3
by | bs
U
, ,
p p ,
S T
. ,

D = {b1, b, b3} D = {b,, b3} D ={b, b} D = {b1, b3}

’ /// //// / //
2 s ;o / / L,
T gle2 t Gl ¢ 1

/D:{bz} /D:{b3} D:{bl} D=9
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Putting it all together

o Take HHL formula I:I# = >_p a,09u(u,0) and apply wV.

@ By construction, all the LLT Catalanimals H,,(,, py appearing on the
RHS will have the same root ideal data (Rgq, R¢, Rqt).

o Collect terms to get [](,, 4 )ev ()1 — grm(bi)+1—lee(b) 7/ 7:) factor
for V() the set of vertical dominoes (bj, bj) in p.

H (1 _ qarm(bi)+1 t—leg(bi)zi/zj) H (1 — qtzo‘)
H, = wo <z1 ez aj;eV(p) a€Ry
m n

Ha€R+ (1 o qza) HaGR“ (1 - tza)




The root ideal R,

by
by | bs Ry = {wjj € Ry | south(b;) < b;},
b4 b5 b@ =
55 b, R, ::A{oz,'j € Ry | south(b;) < b},
row reading order R/_L \ R,LL < V(/,L) == Vertical d0m|noes in /.1/

by < by <--- =< b,

Example:




The root ideal R,

by
by | bs Ry = {wjj € Ry | south(b;) < b;},
b4 b5 b6 =
oo o R, ::A{oz,'j € Ry | south(b;) < b},
row reading order R,LL \ R,LL S V(/,L) == Vertical d0m|noes in /J/

by < by < < by

Example:

H“(X;O,t):w0'<1_[ 1 2Zp )




1@
by 1@
1 [
b
2 ) ®
bs by 1 [
1 [

bs be )

N 1
br by ® R,\R, (tfactors)

partition p = 22211 . R, (t and gt factors)



1 q
g4
e 1 |qt?

B 1 ¢’t?

1-qt ﬁ
1 q
1-¢°t238| 1-q9g2 . 1 g2t
K * Ho2211
1 gt

-3z -1 z

1-?t3%|1-qt'2 1

R\ ﬁu (t factors)

numerator factors 1 — gmtit-leez /7, . Ry (t and gt factors)




g = t = 1 specialization

II (- gmermeeatizz) 11 (- qezn)

wol|lz--z 3 €Ru\Ry .
! Ha€R+ (1 B qzo‘) HCVGR;L (1 a tza)

q:t:1w0' . HQGR}L\,E\;#(]. — za)Ha€§u(1 — za)
F T Tacr. (1= 29) ek, (1 — 29)

o 712,
[laer, (1 —29)

=wh!

:ef



A positivity conjecture

What can this formula tell us that other formulas for Macdonald
polynomials do not?



A positivity conjecture

What can this formula tell us that other formulas for Macdonald
polynomials do not?

H (1 _ qarm(b,-)+1 tfleg(b,-)zl_/zj) H (1 _ qtza)

a;€R,\R, a€R,
[Toer, (1—qz%) HaeRu (1-tz2)

46) = wo | (z1-- - 2z,)°

Conjecture (Blasiak-Haiman-Morse-Pun-S.)

For any partition x and positive integer s, the symmetric function I:Il(f) is
Schur positive. That is, the coefficients in

AR =3 KENa. 1) s(X)

v

satisfy K,Si}(q, t) € N|q, t].




Symmetric functions, representation theory, and

combinatorics

Symmetric function Representation theory = Combinatorics

sa(X) Irreducible V) SSYT(N)
Ay\(X; q,t) Garsia-Haiman M, HHL
Ve, DH, Shuffle theorem

AY (X q, t) 77 27



Thank you!
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