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1. INTRODUCTION

Let K|Q be a finite field extension with [K : Q] = n. Then, we may
consider the integral closure of Z in K, say Og. Thus, we have the following
setup.

K%OK

@
where Ok|Z is an integral ring extension. Now, recall the following facts.

1.1. Proposition. Given the setup above

(a) Ok is a Dedekind domain.
(b) Given a prime p € Z, the ideal (p) = pOrg I Ok has a unique
decomposition

g
() =[] P
=1

for prime ideals P; I Ok and e; € N.
(c) Ok is a finitely-generated, free Z-module, say

O Z27Za1 @ -+ P Zay, as a Z-module.
Thus, Ok /pOk is a finitely-generated 7./ pZ-module, that is
Ok /pOk = (Z/pZ)ox & -+~ & (Z/pL)an
Furthermore, by the Chinese Remainder Theorem,
Ok /pOr =2 Ok /P{* x -+ x Ok | Py’

so each O /P{" is an Fy-vector space, and in fact, an F,-algebra
since p € P

This leads us to the following definition:
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1.2. Definition. We say a prime p € Z is ramified in O if

g
pOK = Hpiei

i=1

has some e; > 1 for prime ideals P; < Og. If every e; = 1, then p is
unramified in Og.

1.3. Example. Consider 2 € Z[i]. Then, since
(14 i) (1 +4) = —i(1+2i— 1) = —i2i = 2,

we have that (2) C (1 + ¢)2. Furthermore, since (1 + i) is prime in Z[i]
using norm arguments, and (2) has norm 4, it must be that (2) = (1 + 7).
Therefore, 2 ramifies in Z[i].

We wish to come up with some method to determine when a prime will
ramify in Og. One such characterization uses the notion of the “discrimi-
nant.”

1.4. Definition. Let V be an m-dimensional vector space over K. Then,

given a symmetric bilinear form b: V x V — K and {w1,...,wn,} a basis of
V', we define
diSC(b; Wiy ,wm) = det(b(wi,wj))lgingm

1.5. Proposition. Given another K-basis of V' as above, say {w],...,wl,}
such that

w1 wi

ML=

Wi wh

we get that

disc(b;wh, ..., W) = (det M)? disc(b; w1, . . . , wm)
Proof. Consider that if
B = (b(wi,wj))1<ij<ms B' = (b(w], w)))i<ij<m

then,

n n

n n
B;; = b(w;,wj) =b (Z M ;Wi ng’jw5> = ZZmLkb(wk,wg)mj,g = (MBM");;
k=1 =1

k=1 ¢=1

and so B’ = M BM?". Then the result is obtained by taking the determinant
of both sides. O

1.6. Definition. Let K be a field and let A be a finite-dimensional K-algebra
with basis {x1,...,2,}. Then,



(a) The trace Tr g (2) := trm, where, if

n
2r; = Zai,jxj, ajj € K
=1
then m, = (a;;)1<ij<n. Note that this is independent of choice of
basis since a different choice will give a matrix m/, that is conjugate

to m,, which will not change the trace.
(b) The trace form T: A x A — K is given by

T(x,y) = Trax (zy)
Since we are in a commutative ring, the form is symmetric. Since

matrix trace is bilinear, then so is the trace form.
(¢) The discriminant of A is

disc(A) := disc(T; x1, ..., Tp)
1.7. Remark. Consier the case that K|Q is a finite separable field extension

with Og C K the integral closure of Z in K.

(a) Then, the discriminant is independent of choice of integral basis since,
given another integral basis {z,...,z,}, we have

disc(T; ), ..., z)) = (det M)? disc(T; z1, . . ., )

However, M is an invertible matrix with entries in 7Z, so it must be
that det M = +1 = (det M)? = 1.
(b) Note disc(K) is always an integer because Trgp(Ok) C Z.

1.8. Example. Consider the field extension Q(7)|Q. Then, if we take integral
basis {1,i}, we get

10 0 1
m1:<0 1),mi:<_1 0>,andm_1:—m1

Tr(1) = 2, Tr(i) = 0, Tr(—1) = —2

Thus,

and so
disc({1,7}) = det < ?;((1)) Trfé(_q) > = det( g _02 > =—4
This paper seeks to prove the following useful characterization for when
a prime p ramifies in Of.
1.9. Theorem. A prime p € Z ramifies in O if and only if p | disc(K).
From this result, we also have the useful corollary
1.10. Corollary. Only a finite number of primes p € Z ramify in O .

Thus, from our running example, 2 is the only prime that ramifies in Z][i].
In the next section, we will follow a synthesis of the programs by [Ash03, 4.2]
and [Con] to prove this theorem.



2. STRUCTURE AND TRACE OF THE QUOTIENT O /pOk

Using our same setup, let (p) = pOg = [, P{* for prime ideals P; < Ok
and e¢; € N.

2.1. Lemma. p ramifies if and only if the ring Ok /(p) has nonzero nilpotent
elements.

Proof. e (=). Let p ramify in Og. Then, Ok /pOx = Ok /P;* X
- x Ok /PS» by the Chinese Remainder Theorem, where at least
one e; > 1, let us say e;. Then, the quotient ring Ok /P has a
nonzero nilpotent element since, for x € P\ P{*, we get (x+P;*)° =
xz® 4+ Pt = Pyt

e («<). If p does not ramify in Ok, then Ox/pOx = Og/P; X
- X Ok /Py, each of which is a field since each P; is maximal in
Ok . Furthermore, each of these fields is finite by Proposition 1.1(c).

Thus, Ok /pOk cannot have any nonzero nilpotent elements.

O

We also have, as a corollary to the proof, that

2.2. Corollary. If p is unramified in Ok, then Ok /pOk is a product of
finite fields.

This is a useful fact since

2.3. Lemma. A nilpotent element has zero trace.

Proof. Let 2™ = 0 for some n € N. Then, since m,x = (m;)¥, it must be
that (my)™ = 0, so my is a nilpotent matrix, which has trace 0 since its
mimimal polynomial fi,, (¢) | t”. Therefore,

Trgg(z) =trm, =0

And so, we get

2.4. Lemma. For prime p € Z, let pOx = [[{_, P{*. For any e; > 1,
discr, (Ok /P{") = 0.

Proof. From 1.1(c), we have that O /P{" is an F,-algebra. By the above,
since at least one e; > 1, p ramifies and so we know O/ Pf" has a nonzero
nilpotent element, say x. Then, extend {z} to a basis of Ok /P;" over Fp,
say {x,z2,...,zr}. Each zz; is nilpotent, so, for all 7,

Tro . ptifg, (42i) = 0

and so, since the trace form matrix will have a row of all zeros, it must have
determinant equal to 0 and so the discriminant is 0. (|



2.5. Lemma. Let p is in O be unramified, that is, pOx = [[_, P;. Then,
the trace form of Ok /P; over Fy is nondegenerate. Thus, given the field
extension O | P|Fy, the discriminant

disc(Ok/P) #0 € F)
Proof. By the arguments above, we already know that O /P; is a finite
field, and since I, is perfect, we have that O /P;|F, is a separable field
extension. Therefore, by Lemma 2.2.3 in class, it must be that the trace

form is nondegenerate. Therefore, fixing an F)-basis of O /P;, {w1, ..., wk}
the matrix

(T(wi,wj))lgingn is invertible <= det(T(wi,wj))lgwgn ?é 0
Therefore, disc(Of/P) # 0. O

3. DISCRIMINANT BEHAVES WELL WITH REDUCTION mod p AND
Probucts

3.1. Lemma. For an appropriate choice of bases,
disc(K) mod p = disc(Ok /pOk)

Proof. Let {a1,...,a,} be an integral basis for Og|Z. Then, for z € Ok,
we have a; ; € Z such that

voi =) aijo; = woq +pOx = Y @i jo; +pOx
; ;

where @; ; = a; ; mod p. Thus, m, with the entries reduced mod p is equal
to My4po, - Thus,

TrOK/pOK‘Fp (2+pOx) = tr(merpOK) =tr(m;) modp= TrK|Q($) mod p
giving us that

(Trrjo(ia)i<ij<n mod p = Troy )2/ (@05)
and so, taking determinants of both sides gives the desired result. 0

3.2. Lemma. Let F be a field with By, By finitely-generated F-algebras.
Then, up to appropriate choice of basis,

disc(B; x Bg) = disc(B;) disc(Ba)
Proof. Let

Bl —G?Fei, BQ_G?Ffj
i= j=

Then, take the standard choice of F-basis of By x Ba, {€e1,...,em, f1,--+, fm}-
Since e; f; = 0 in By x Bg, we get that

_ Trp, xp,|F(€ick) 0 )
disc(B;1 x Bsy) = det i
(B1 x By) ( 0 Tr g, x By # (fi f2)



Also, for = € By, since xy = 0 for all y € By, we have

Trp, x By r(z) = Trp, ()
and similarly for y € Bo
Trp, xB,|F(¥) = Trp, r(y)
Thus,
( Trp, « B, F(€iek) 0 ) _ ( Trp, |r(eiek) 0 >
0 Trp, xB,|F(fjfe) 0 Trp,r(fjfe)

and so, taking the determinant of both sides, we get the desired result. [

4. PROOF OF THE RAMIFICATION THEOREM
We now prove our theorem.

Proof of 1.9. We first observe that
p | disc(K) <= disc(K) =0 mod p
<= disc(Ok/(p)) =0 by Lemma 3.1
= Hdisc((’)K/Pfi) =0 by Lemma 3.2
Thus, if any e; > 1, we get that Og /P has a nonzero nilpotent element

by 2.1, and so disc(Ok/P{") = 0 by 2.4, thus giving p | discz(Ok) by the
equivalences above.

If all e = 1, then each Ok /P, is a finite field, so disc(Ok/P;) # 0 by 2.5.
Therefore, it must be that p { disc(K). O

5. FACTORIZATION IN QUADRATIC NUMBER FIELDS

In this section, we follow [Ash03] to determine some results about factor-
ization of primes in quadratic number fields. First, recall the theorem

5.1. Theorem (Ram-Rel Identity). Let A be an integral domain with field
of fractions K, L|K a finite separable field extension of degree n, and B the
integral closure of A in L. Given a prime ideal P < A, if

g
PB =[P fi=[B/P;: A/P]
=1

then
g

> eifi=[B/PB:A/P|=n

i=1

Thus, for m € Z \ {0,1}, a squarefree integer, Q(y/m)|Q has degree 2.
Thus, for a prime p € Z, there are only three possible situations.



(a) g =2,e1 = e = f1 = fo =1, that is,
(p) = P1P»

In this situation, we say that p splits in Ok.
(b) g = 1,e; = 1, f1 = 2, that is, (p) is a prime ideal of Ok. In this
situations, we say that (p) is inert.
(¢c) g=1,e1 =2, f1 =1, that is,
(p) = P{
so p ramifies.

Furthermore, we will use the following result about the discriminant of
Q(vm).

5.2. Proposition. The discriminant of Q(y/m) is m if m =1 mod 4 and
it is 4m if m = 2,3 mod 4. In particular, the discriminant is always 0 or
1 mod 4.

Proof. If m #1 mod 4, {1,/m} is an integral basis of Q(y/m). Then,

Tr(a+by/m) = tr< A > — 20 —> disc(Q(v/m)) = det( : ) —4m

If m=1 mod 4, then {1, 1+5/% } forms an integral basis and

<1+\/m>2_m—1+1+\/m

2 4 2
So, Tr(1) =2 and

ie
—

—_ =
N~~~
Il
-

Thus

=
A~
3
|
—_
—
+
o )
3
~_
Il
=
TN~
A
T =
w
~_
Il
3
+
—_

We then have the following result.
5.3. Theorem. Let prime p # 2. Then,

(a) (p) ramifies as (p,/m)? in Q(v/m) if and only if m =0 mod p.
(8) (p) splits as () = (pra + yim)(p 0~ i) in Q(y/7) if and only if

m = a® mod p for some a Z0 mod p.
(c) (p) is inert in Q(/m) if and only if m # a®> mod p for all a.
If p=2 and m is odd, then
(a) (2) ramifies in Q(y/m) if and only if m =3 mod 4.



(b) (2) splits as (2, Hﬁ) (2, lfﬁ) in Q(v/m) if and only if m =1
mod 8.
(¢c) (2) is inert in Q(y/m) if and only if m =5 mod 8.

Proof. We break down the various situations. Throughout, let D = disc(Q(y/m)).

e Assume p is an odd prime with p not dividing m. p does not divide
the discriminant, so (p) cannot ramify.
— If m=a? modp, a#0 mod p, then (p) = (p,a+ vm)(p,a —
\/m) because

(p,a+vm)(p,a —v/m) = (p*,pa+ pvm,pa — py/m, a®> —m ) C (p)
=0 mod p

and since

pla+vm+a—+/m)=2ap € (p,a+vm)(p,a—/m)
but @ Z 0 mod p, so ged(2ap,p?) = p, and thus p € (p,a +
Vvm)(p,a —/m).

— If m # a®> mod p, then 22 — m is irreducible mod p. Assume
(p) = Q1Q2. Each @Q; must have norm p, thus giving Ok /Q; =
F,. However, ym € Og = m has a square root in F,, a
contradiction. Thus, (p) is inert.

e Let p divide m. Then, p divides the discriminant and so (p) ramifies.

In fact,
(p,vm)® = (0, pv/m,m) C (p)
However, since m is squarefree, p? { m, so ged(p?,m) = p, so p €
(p, vVm)*.
e Let p =2 and m be odd.
— If m=3 mod 4 = D = 4m, then 2 divides the discriminant,
so (2) ramifies. We claim (2) = (2,1 + /m)?. First, we check

2,1+ vm)? = (4,2(1 + vm), 1 +2¢/m +m) C (2)
————

=0 mod 2

2

Furthermore,
14+2ym+m—2(1++vm)=m—-1=2 mod 4
so there is some x € Z such that
m—1+4r =2

thus giving us equality of ideals.
—Ifm=1 mod 8§, thenm =1 mod 4, so we get an integral basis
{1, H_ﬁ} and the discriminant is D = m. Therefore, 2 { D, so

(2) does not ramify. We then compute,

1—-m

4
N——

Even

0, XV o 12V 4y v,

2 > )< @



However, we also have

1—\/%+1+\/E=2e(2,1+2*/m)(2,1_2‘/m)

giving us the desired ideal equality.
— If m =5 mod 8, then m = 1 mod 4, so D = m, meaning 2
does not ramify. Consider

1-m

fx)=2*—z+

€ (Ok/P)la]

where (2) C P a prime ideal in Og. The roots of f are lig/r",
so f has a root in Ok and hence in O /P. However, since
1_Tm =1 mod 2, f has no root in Fo. Therefore, O /P and Fo
cannnot be isomorphic. If (2) = P; P, in Ok, then the norm of
(2) is 4 and so Py, P, each have norm 2. Therefore, O /P; = Fy,
which is a contradiction. Thus, (2) must remain prime.

O
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