Catalanimals, shuffle theorems, and Macdonald polynomials

George H. Seelinger joint work with J. Blasiak, M. Haiman, J. Morse, and A. Pun

ghseeli@umich.edu

SMRI: Modern Perspectives in Representation Theory

22 May 2025

Algebraic quantity = Combinatorial generating function

```
Algebraic quantity = Combinatorial generating function
```


- Background on symmetric functions and Macdonald polynomials
- Shuffle theorems, combinatorics, and LLT polynomials
- A new formula for Macdonald polynomials

• Symmetric polynomials $\Bbbk[z_1,\ldots,z_n]^{S_n}$

Generators

$$e_r(z_1,\ldots,z_n)=\sum_{1\leq i_1< i_2<\cdots< i_r\leq n}z_{i_1}\cdots z_{i_r}$$

$$e_1(z_1, z_2, z_3) = z_1 + z_2 + z_3$$

$$e_2(z_1, z_2, z_3) = z_1 z_2 + z_1 z_3 + z_2 z_3$$

$$e_3(z_1, z_2, z_3) = z_1 z_2 z_3$$

• Symmetric polynomials $\Bbbk[z_1,\ldots,z_n]^{S_n}$

Generators

$$e_r(z_1,\ldots,z_n) = \sum_{1 \leq i_1 < i_2 < \cdots < i_r \leq n} z_{i_1} \cdots z_{i_r}$$

$$e_1(z_1, z_2, z_3) = z_1 + z_2 + z_3$$

$$e_2(z_1, z_2, z_3) = z_1 z_2 + z_1 z_3 + z_2 z_3$$

$$e_3(z_1, z_2, z_3) = z_1 z_2 z_3$$

• $\Lambda = \Bbbk[e_1, e_2, \ldots]$

• Symmetric polynomials $\mathbb{k}[z_1,\ldots,z_n]^{S_n}$

Generators

$$e_r(z_1,\ldots,z_n) = \sum_{1 \leq i_1 < i_2 < \cdots < i_r \leq n} z_{i_1} \cdots z_{i_r}$$

$$e_1(z_1, z_2, z_3) = z_1 + z_2 + z_3$$

$$e_2(z_1, z_2, z_3) = z_1 z_2 + z_1 z_3 + z_2 z_3$$

$$e_3(z_1, z_2, z_3) = z_1 z_2 z_3$$

• $\Lambda = \Bbbk[e_1, e_2, \ldots]$

• Degree *d* elements of $\Lambda = \Bbbk$ -vector space of dimension...?

• Symmetric polynomials $\Bbbk[z_1,\ldots,z_n]^{S_n}$

Generators

$$e_r(z_1,\ldots,z_n) = \sum_{1 \leq i_1 < i_2 < \cdots < i_r \leq n} z_{i_1} \cdots z_{i_r}$$

$$e_1(z_1, z_2, z_3) = z_1 + z_2 + z_3$$

$$e_2(z_1, z_2, z_3) = z_1 z_2 + z_1 z_3 + z_2 z_3$$

$$e_3(z_1, z_2, z_3) = z_1 z_2 z_3$$

• $\Lambda = \Bbbk[e_1, e_2, \ldots]$

• Degree *d* elements of $\Lambda = \Bbbk$ -vector space of dimension...?

• Integer partitions of *d*.

Partitions

Definition

$n \in \mathbb{Z}_{>0}$, a partition of n is $\lambda = (\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_\ell > 0)$ such that $\lambda_1 + \lambda_2 + \cdots + \lambda_\ell = n$.

Definition

 $n \in \mathbb{Z}_{>0}$, a partition of n is $\lambda = (\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_\ell > 0)$ such that $\lambda_1 + \lambda_2 + \cdots + \lambda_\ell = n$.

Definition

Filling of partition diagram of λ with numbers such that

Definition

Filling of partition diagram of λ with numbers such that

strictly increasing up columns

Definition

Filling of partition diagram of λ with numbers such that

- strictly increasing up columns
- e weakly increasing along rows

Definition

Filling of partition diagram of λ with numbers such that

- strictly increasing up columns
- weakly increasing along rows

Collection is called SSYT(λ).

Definition

Filling of partition diagram of λ with numbers such that

- strictly increasing up columns
- weakly increasing along rows

Collection is called SSYT(λ).

For $\lambda = (2, 1)$,

Associate a polynomial to $SSYT(\lambda)$.

Definition

For λ a partition

$$s_{\lambda} = \sum_{T \in \text{SSYT}(\lambda)} \boldsymbol{z}^T \text{ for } \boldsymbol{z}^T = \prod_{i \in T} z_i$$

Associate a polynomial to $SSYT(\lambda)$.

Definition

For λ a partition

$$s_{\lambda} = \sum_{T \in \text{SSYT}(\lambda)} \boldsymbol{z}^{T} \text{ for } \boldsymbol{z}^{T} = \prod_{i \in T} z_{i}$$

• s_{λ} is a symmetric function.

Associate a polynomial to $SSYT(\lambda)$.

Definition

For λ a partition

$$s_{\lambda} = \sum_{T \in \text{SSYT}(\lambda)} \boldsymbol{z}^T \text{ for } \boldsymbol{z}^T = \prod_{i \in T} z_i$$

- s_{λ} is a symmetric function.
- $\{s_{\lambda}\}_{\lambda}$ forms a basis for Λ .

Irreducible representations of S_n are **also** labeled by partitions of n.

Irreducible representations of S_n are **also** labeled by partitions of n.

$$V_{\Box \Box \Box} = \text{trivial}, \ V_{\Box \Box} \cong \mathbb{C}^3 / \operatorname{span}\{(1,1,1)\}, \ V_{\Box} = \text{sign}$$

Irreducible representations of S_n are **also** labeled by partitions of n.

$$V_{\Box} =$$
trivial, $V_{\Box} \cong \mathbb{C}^3 / \operatorname{span}\{(1,1,1)\}, V_{\Box} =$ sign

Irreducible representations of S_n are **also** labeled by partitions of n.

$$V_{\Box \Box \Box} = \text{trivial}, \ V_{\Box \Box} \cong \mathbb{C}^3 / \operatorname{span}\{(1,1,1)\}, \ V_{\Box} = \text{sign}$$

Frobenius charactersitc, Frob: $Rep(S_n) \rightarrow \Lambda$, such that

• Irreducible S_n -representation V_λ has $\operatorname{Frob}(V_\lambda) = s_\lambda$

Irreducible representations of S_n are **also** labeled by partitions of n.

$$V_{\square\square} =$$
trivial, $V_{\square} \cong \mathbb{C}^3 / \operatorname{span}\{(1,1,1)\}, V_{\square} =$ sign

- Irreducible S_n -representation V_λ has $\operatorname{Frob}(V_\lambda) = s_\lambda$
- $U \cong V \oplus W \Longrightarrow \operatorname{Frob}(U) = \operatorname{Frob}(V) + \operatorname{Frob}(W)$

Irreducible representations of S_n are **also** labeled by partitions of n.

$$V_{\Box} =$$
trivial, $V_{\Box} \cong \mathbb{C}^3 / \operatorname{span}\{(1,1,1)\}, V_{\Box} =$ sign

- Irreducible S_n -representation V_λ has $\operatorname{Frob}(V_\lambda) = s_\lambda$
- $U \cong V \oplus W \Longrightarrow \operatorname{Frob}(U) = \operatorname{Frob}(V) + \operatorname{Frob}(W)$
- $\operatorname{Ind}_{S_m \times S_n}^{S_{m+n}}(V \times W) \mapsto \operatorname{Frob}(V) \cdot \operatorname{Frob}(W)$

Irreducible representations of S_n are **also** labeled by partitions of n.

$$V_{\square\square} =$$
trivial, $V_{\square} \cong \mathbb{C}^3 / \operatorname{span}\{(1,1,1)\}, V_{\square} =$ sign

- Irreducible S_n -representation V_λ has $\operatorname{Frob}(V_\lambda) = s_\lambda$
- $U \cong V \oplus W \Longrightarrow \operatorname{Frob}(U) = \operatorname{Frob}(V) + \operatorname{Frob}(W)$
- $\operatorname{Ind}_{S_m \times S_n}^{S_{m+n}}(V \times W) \mapsto \operatorname{Frob}(V) \cdot \operatorname{Frob}(W)$
- Frob(Ind $S_3_{S_1 \times S_1 \times S_1}(\mathbb{C} \times \mathbb{C} \times \mathbb{C})) = (s_{\square})^3 = s_{\square\square} + 2s_{\square} + s_{\square}$

Irreducible representations of S_n are **also** labeled by partitions of n.

$$V_{\Box} =$$
trivial, $V_{\Box} \cong \mathbb{C}^3 / \operatorname{span}\{(1,1,1)\}, V_{\Box} =$ sign

Frobenius charactersitc, Frob: $Rep(S_n) \rightarrow \Lambda$, such that

- Irreducible S_n -representation V_λ has $\operatorname{Frob}(V_\lambda) = s_\lambda$
- $U \cong V \oplus W \Longrightarrow \operatorname{Frob}(U) = \operatorname{Frob}(V) + \operatorname{Frob}(W)$
- $\operatorname{Ind}_{S_m \times S_n}^{S_{m+n}}(V \times W) \mapsto \operatorname{Frob}(V) \cdot \operatorname{Frob}(W)$
- Frob(Ind $S_3_{S_1 \times S_1 \times S_1}(\mathbb{C} \times \mathbb{C} \times \mathbb{C})) = (s_{\Box})^3 = s_{\Box \Box \Box} + 2s_{\Box \Box} + s_{\Box \Box}$

Hidden Guide: Schur Positivity

"Naturally occurring" symmetric functions which are non-negative (coefficients in \mathbb{N}) linear combinations in Schur polynomial basis are interesting since they could have representation-theoretic models.

$$\Delta = \det \begin{vmatrix} x_1^2 & x_1 & 1 \\ x_2^2 & x_2 & 1 \\ x_3^2 & x_3 & 1 \end{vmatrix} = x_1^2(x_2 - x_3) - x_2^2(x_1 - x_3) + x_3^2(x_1 - x_2)$$

 $S_3 \curvearrowright \operatorname{span}{\Delta}$ via $\sigma.\Delta = \operatorname{sgn}(\sigma)\Delta$.

$$span{\Delta} \qquad \cong V_{\square}$$

$$span{2x_{1}(x_{2} - x_{3}) - x_{2}^{2} + x_{3}^{2}, 2x_{2}(x_{3} - x_{1}) - x_{3}^{2} + x_{1}^{2}} \qquad \cong V_{\square}$$

$$span{x_{3} - x_{1}, x_{2} - x_{3}} \qquad \cong V_{\square}$$

$$span{x_{3} - x_{1}, x_{2} - x_{3}} \qquad \cong V_{\square}$$

$$span{1} \qquad \cong V_{\square}$$

•
$$\operatorname{Frob}(M) = s_{+} + 2s_{+} + s_{+}$$
A Graded Example

$$span{\Delta} \qquad \cong V_{\square}$$

$$span{2x_{1}(x_{2} - x_{3}) - x_{2}^{2} + x_{3}^{2}, 2x_{2}(x_{3} - x_{1}) - x_{3}^{2} + x_{1}^{2}} \qquad \cong V_{\square}$$

$$span{x_{3} - x_{1}, x_{2} - x_{3}} \qquad \cong V_{\square}$$

$$span{x_{3} - x_{1}, x_{2} - x_{3}} \qquad \cong V_{\square}$$

$$span{1} \qquad \cong V_{\square}$$

• $(V_{\lambda} \text{ in degree } d) \mapsto q^d s_{\lambda}$

•
$$(V_{\lambda} \text{ in degree } d) \mapsto q^{d} s_{\lambda}$$

• $\operatorname{Frob}(M) = q^{3} s_{1} + q^{2} s_{1} + q^{1} s_{1} + q^{0} s_{1}$

- $(V_{\lambda} \text{ in degree } d) \mapsto q^{d} s_{\lambda}$ • Frob $(M) = q^{3}s_{1} + q^{2}s_{1} + q^{1}s_{1} + q^{0}s_{1}$.
- Hall-Littlewood polynomial $H_{\square}(X; q)$.

$$\begin{aligned} & \text{span}\{\Delta\} & \cong V & \text{deg} = 3 \\ & \downarrow^{\partial_{x_i}} & & \downarrow^{\partial_{x_i}} & & \text{deg} = 3 \\ & \text{span}\{2x_1(x_2 - x_3) - x_2^2 + x_3^2, 2x_2(x_3 - x_1) - x_3^2 + x_1^2\} & \cong V & \text{deg} = 2 \\ & \downarrow^{\partial_{x_i}} & & \downarrow^{\partial_{x_i}} & & \text{deg} = 1 \\ & \downarrow^{\partial_{x_i}} & & \downarrow^{\partial_{x_i}} & & \text{deg} = 1 \\ & \downarrow^{\partial_{x_i}} & & \text{span}\{1\} & & \cong V & \text{deg} = 0 \end{aligned}$$

- $(V_{\lambda} \text{ in degree } d) \mapsto q^d s_{\lambda}$ • $\operatorname{Frob}(M) = q^3 s_{1} + q^2 s_{1} + q^1 s_{1} + q^0 s_{1}$
- Hall-Littlewood polynomial $H_{\square}(X; q)$.

• Remark: $M \cong \mathbb{Z}[x_1, x_2, x_3]/\text{Sym}^+ \cong H^*(Fl_3)$ as graded S_3 -representations.

• In 1988, Macdonald introduces one basis of symmetric polynomials to rule them all!

- In 1988, Macdonald introduces one basis of symmetric polynomials to rule them all!
- Coefficients in $\mathbb{Q}(q, t)$, specializations give Hall-Littlewood polynomials, Schur polynomials, and many other famous bases.

- In 1988, Macdonald introduces one basis of symmetric polynomials to rule them all!
- Coefficients in $\mathbb{Q}(q, t)$, specializations give Hall-Littlewood polynomials, Schur polynomials, and many other famous bases.
- Defined by orthogonality and triangularity under a certain inner-product.

- In 1988, Macdonald introduces one basis of symmetric polynomials to rule them all!
- Coefficients in $\mathbb{Q}(q, t)$, specializations give Hall-Littlewood polynomials, Schur polynomials, and many other famous bases.
- Defined by orthogonality and triangularity under a certain inner-product.
- Garsia modifies these polynomials so

$$ilde{\mathcal{H}}_\lambda(X;q,t) = \sum_\mu ilde{\mathcal{K}}(q,t) s_\mu$$
 conjecturally satisfies $ilde{\mathcal{K}}(q,t) \in \mathbb{N}[q,t]$

- In 1988, Macdonald introduces one basis of symmetric polynomials to rule them all!
- Coefficients in $\mathbb{Q}(q, t)$, specializations give Hall-Littlewood polynomials, Schur polynomials, and many other famous bases.
- Defined by orthogonality and triangularity under a certain inner-product.
- Garsia modifies these polynomials so

$$ilde{\mathcal{H}}_\lambda(X;q,t) = \sum_\mu ilde{\mathcal{K}}(q,t) s_\mu$$
 conjecturally satisfies $ilde{\mathcal{K}}(q,t) \in \mathbb{N}[q,t]$

• $\tilde{H}_{\lambda}(X;1,1) = s_1^{|\lambda|}$.

- In 1988, Macdonald introduces one basis of symmetric polynomials to rule them all!
- Coefficients in $\mathbb{Q}(q, t)$, specializations give Hall-Littlewood polynomials, Schur polynomials, and many other famous bases.
- Defined by orthogonality and triangularity under a certain inner-product.
- Garsia modifies these polynomials so

$$ilde{\mathcal{H}}_\lambda(X;q,t) = \sum_\mu ilde{\mathcal{K}}(q,t) s_\mu$$
 conjecturally satisfies $ilde{\mathcal{K}}(q,t) \in \mathbb{N}[q,t]$

- $ilde{H}_{\lambda}(X;1,1) = s_1^{|\lambda|}.$
- Does there exist a family of S_n -regular representations whose bigraded Frobenius characteristics equal $\tilde{H}_{\lambda}(X; q, t)$?

• $S_n \curvearrowright \mathbb{Q}[x_1, \ldots, x_n, y_1, \ldots, y_n]$ with $\sigma(x_i) = x_{\sigma(i)}, \sigma(y_j) = y_{\sigma(j)}$.

- $S_n \curvearrowright \mathbb{Q}[x_1, \ldots, x_n, y_1, \ldots, y_n]$ with $\sigma(x_i) = x_{\sigma(i)}, \sigma(y_j) = y_{\sigma(j)}$.
- Garsia-Haiman (1993): $M_{\mu} =$ span of partial derivatives of $\Delta_{\mu} = \det_{(i,j)\in\mu,k\in[n]}(x_k^{i-1}y_k^{j-1})$

- $S_n \curvearrowright \mathbb{Q}[x_1, \ldots, x_n, y_1, \ldots, y_n]$ with $\sigma(x_i) = x_{\sigma(i)}, \sigma(y_j) = y_{\sigma(j)}$.
- Garsia-Haiman (1993): $M_{\mu} =$ span of partial derivatives of $\Delta_{\mu} = \det_{(i,j)\in\mu,k\in[n]}(x_k^{i-1}y_k^{j-1})$

$$\Delta_{\square} = \det \begin{vmatrix} 1 & y_1 & x_1 \\ 1 & y_2 & x_2 \\ 1 & y_3 & x_3 \end{vmatrix} = x_3 y_2 - y_3 x_2 - y_1 x_3 + y_1 x_2 + y_3 x_1 - y_2 x_1$$

- $S_n \curvearrowright \mathbb{Q}[x_1, \ldots, x_n, y_1, \ldots, y_n]$ with $\sigma(x_i) = x_{\sigma(i)}, \sigma(y_j) = y_{\sigma(j)}$.
- Garsia-Haiman (1993): $M_{\mu} =$ span of partial derivatives of $\Delta_{\mu} = \det_{(i,j) \in \mu, k \in [n]}(x_k^{i-1}y_k^{j-1})$

$$\Delta_{\square} = \det \begin{vmatrix} 1 & y_1 & x_1 \\ 1 & y_2 & x_2 \\ 1 & y_3 & x_3 \end{vmatrix} = x_3 y_2 - y_3 x_2 - y_1 x_3 + y_1 x_2 + y_3 x_1 - y_2 x_1$$

$$M_{2,1} =$$

$$\underbrace{\mathsf{span}\{\Delta_{2,1}\}}_{\mathsf{deg}=(1,1)} \oplus \underbrace{\mathsf{span}\{y_3 - y_1, y_1 - y_2\}}_{\mathsf{deg}=(0,1)} \oplus \underbrace{\mathsf{span}\{x_3 - x_1, x_1 - x_2\}}_{\mathsf{deg}=(1,0)} \oplus \underbrace{\mathsf{span}\{1\}}_{\mathsf{deg}=(0,0)}$$

- $S_n \curvearrowright \mathbb{Q}[x_1, \ldots, x_n, y_1, \ldots, y_n]$ with $\sigma(x_i) = x_{\sigma(i)}, \sigma(y_j) = y_{\sigma(j)}$.
- Garsia-Haiman (1993): $M_{\mu} =$ span of partial derivatives of $\Delta_{\mu} = \det_{(i,j) \in \mu, k \in [n]}(x_k^{i-1}y_k^{j-1})$

$$\Delta_{\square} = \det \begin{vmatrix} 1 & y_1 & x_1 \\ 1 & y_2 & x_2 \\ 1 & y_3 & x_3 \end{vmatrix} = x_3 y_2 - y_3 x_2 - y_1 x_3 + y_1 x_2 + y_3 x_1 - y_2 x_1$$

$$M_{2,1} =$$

$$\underbrace{\mathsf{span}\{\Delta_{2,1}\}}_{\mathsf{deg}=(1,1)} \oplus \underbrace{\mathsf{span}\{y_3 - y_1, y_1 - y_2\}}_{\mathsf{deg}=(0,1)} \oplus \underbrace{\mathsf{span}\{x_3 - x_1, x_1 - x_2\}}_{\mathsf{deg}=(1,0)} \oplus \underbrace{\mathsf{span}\{1\}}_{\mathsf{deg}=(0,0)}$$

Irreducible S_n -representation V_λ with bidegree $(a, b) \mapsto q^a t^b s_\lambda$

- $S_n \curvearrowright \mathbb{Q}[x_1, \ldots, x_n, y_1, \ldots, y_n]$ with $\sigma(x_i) = x_{\sigma(i)}, \sigma(y_j) = y_{\sigma(j)}$.
- Garsia-Haiman (1993): $M_{\mu} =$ span of partial derivatives of $\Delta_{\mu} = \det_{(i,j) \in \mu, k \in [n]}(x_k^{i-1}y_k^{j-1})$

$$\Delta_{\square} = \det \begin{vmatrix} 1 & y_1 & x_1 \\ 1 & y_2 & x_2 \\ 1 & y_3 & x_3 \end{vmatrix} = x_3 y_2 - y_3 x_2 - y_1 x_3 + y_1 x_2 + y_3 x_1 - y_2 x_1$$

$$M_{2,1} =$$

$$\underbrace{\mathsf{span}\{\Delta_{2,1}\}}_{\mathsf{deg}=(1,1)} \oplus \underbrace{\mathsf{span}\{y_3 - y_1, y_1 - y_2\}}_{\mathsf{deg}=(0,1)} \oplus \underbrace{\mathsf{span}\{x_3 - x_1, x_1 - x_2\}}_{\mathsf{deg}=(1,0)} \oplus \underbrace{\mathsf{span}\{1\}}_{\mathsf{deg}=(0,0)}$$

Irreducible S_n -representation V_λ with bidegree $(a, b) \mapsto q^a t^b s_\lambda$

$$\tilde{H}_{\underline{\square}} = q^{1}t^{1}s_{\underline{\square}} + t^{1}s_{\underline{\square}} + q^{1}s_{\underline{\square}} + s_{\underline{\square}}$$

The Garsia-Haiman module M_{λ} has bigraded Frobenius characteristic given by $\tilde{H}_{\lambda}(X;q,t)$

The Garsia-Haiman module M_{λ} has bigraded Frobenius characteristic given by $\tilde{H}_{\lambda}(X; q, t)$

• Proved via connection to the Hilbert Scheme $Hilb^n(\mathbb{C}^2)$.

The Garsia-Haiman module M_{λ} has bigraded Frobenius characteristic given by $\tilde{H}_{\lambda}(X; q, t)$

• Proved via connection to the Hilbert Scheme $Hilb^n(\mathbb{C}^2)$.

Corollary

$$ilde{\mathcal{H}}_{\lambda}(X;q,t) = \sum_{\mu} ilde{\mathcal{K}}_{\lambda\mu}(q,t) s_{\mu} ext{ satisfies } ilde{\mathcal{K}}_{\lambda\mu}(q,t) \in \mathbb{N}[q,t].$$

The Garsia-Haiman module M_{λ} has bigraded Frobenius characteristic given by $\tilde{H}_{\lambda}(X;q,t)$

• Proved via connection to the Hilbert Scheme $Hilb^n(\mathbb{C}^2)$.

Corollary

$$ilde{\mathcal{H}}_\lambda(X;q,t) = \sum_\mu ilde{\mathcal{K}}_{\lambda\mu}(q,t) s_\mu$$
 satisfies $ilde{\mathcal{K}}_{\lambda\mu}(q,t) \in \mathbb{N}[q,t].$

• No combinatorial description of $\tilde{K}_{\lambda\mu}(q,t)$.

Symmetric functions, representation theory, and combinatorics

Symmetric function	Representation theory	Combinatorics
s_λ	Irreducible V_λ	$SSYT(\lambda)$
$ ilde{H}_{\lambda}(X;q,t)$	Garsia-Haiman M_λ	Later

Observation

All of these Garsia-Haiman modules are contained in the module of diagonal harmonics:

$$DH_n = \operatorname{span}\{f \in \mathbb{C}[x_1, \dots, x_n, y_1, \dots, y_n] \mid \left(\sum_{j=1}^n \partial_{x_j}^r \partial_{y_j}^s\right) f = 0, \forall r+s > 0\}$$

Observation

All of these Garsia-Haiman modules are contained in the module of diagonal harmonics:

$$DH_n = \operatorname{span} \{ f \in \mathbb{C}[x_1, \dots, x_n, y_1, \dots, y_n] \mid \left(\sum_{j=1}^n \partial_{x_j}^r \partial_{y_j}^s \right) f = 0, \forall r+s > 0 \}$$

Question

What symmetric function is the bigraded Frobenius characteristic of DH_n ?

$$=\frac{t^{3}\tilde{H}_{1,1,1}}{-qt^{2}+t^{3}+q^{2}-qt}-\frac{(q^{2}t+qt^{2}+qt)\tilde{H}_{2,1}}{-q^{2}t^{2}+q^{3}+t^{3}-qt}-\frac{q^{3}\tilde{H}_{3}}{-q^{3}+q^{2}t+qt-t^{2}}$$

$$=\frac{t^{3}\tilde{H}_{1,1,1}}{-qt^{2}+t^{3}+q^{2}-qt}-\frac{(q^{2}t+qt^{2}+qt)\tilde{H}_{2,1}}{-q^{2}t^{2}+q^{3}+t^{3}-qt}-\frac{q^{3}\tilde{H}_{3}}{-q^{3}+q^{2}t+qt-t^{2}}$$

Compare to

$$e_{3} = \frac{\tilde{H}_{1,1,1}}{-qt^{2}+t^{3}+q^{2}-qt} - \frac{(q+t+1)\tilde{H}_{2,1}}{-q^{2}t^{2}+q^{3}+t^{3}-qt} - \frac{\tilde{H}_{3}}{-q^{3}+q^{2}t+qt-t^{2}}$$

$$=\frac{t^{3}\tilde{H}_{1,1,1}}{-qt^{2}+t^{3}+q^{2}-qt}-\frac{(q^{2}t+qt^{2}+qt)\tilde{H}_{2,1}}{-q^{2}t^{2}+q^{3}+t^{3}-qt}-\frac{q^{3}\tilde{H}_{3}}{-q^{3}+q^{2}t+qt-t^{2}}$$

Compare to

$$e_{3} = \frac{\tilde{H}_{1,1,1}}{-qt^{2}+t^{3}+q^{2}-qt} - \frac{(q+t+1)\tilde{H}_{2,1}}{-q^{2}t^{2}+q^{3}+t^{3}-qt} - \frac{\tilde{H}_{3}}{-q^{3}+q^{2}t+qt-t^{2}}$$

Operator ∇

$$abla ilde{H}_{\lambda}(X;q,t) = q^{n(\lambda)} t^{n(\lambda^*)} ilde{H}_{\lambda}(X;q,t),$$

where $n(\lambda) = \sum_{i} (i-1)\lambda_i$ and λ^* is the transpose partition to λ .

$$=\frac{t^{3}\tilde{H}_{1,1,1}}{-qt^{2}+t^{3}+q^{2}-qt}-\frac{(q^{2}t+qt^{2}+qt)\tilde{H}_{2,1}}{-q^{2}t^{2}+q^{3}+t^{3}-qt}-\frac{q^{3}\tilde{H}_{3}}{-q^{3}+q^{2}t+qt-t^{2}}$$

Compare to

$$e_{3} = \frac{\tilde{H}_{1,1,1}}{-qt^{2}+t^{3}+q^{2}-qt} - \frac{(q+t+1)\tilde{H}_{2,1}}{-q^{2}t^{2}+q^{3}+t^{3}-qt} - \frac{\tilde{H}_{3}}{-q^{3}+q^{2}t+qt-t^{2}}$$

Operator ∇

$$abla ilde{H}_{\lambda}(X;q,t) = q^{n(\lambda)} t^{n(\lambda^*)} ilde{H}_{\lambda}(X;q,t),$$

where $n(\lambda) = \sum_{i} (i-1)\lambda_i$ and λ^* is the transpose partition to λ .

Theorem (Haiman, 2002)

The bigraded Frobenius characteristic of DH_n is given by ∇e_n .

Symmetric functions, representation theory, and combinatorics

Symmetric function	Representation theory	Combinatorics
s_λ	Irreducible V_λ	$SSYT(\lambda)$
$ ilde{H}_\lambda(X;q,t)$	Garsia-Haiman M_λ	Later
∇e_n	DHn	Now: Shuffle theorem

- Background on symmetric functions and Macdonald polynomials
- **②** Shuffle theorems, combinatorics, and LLT polynomials
- A new formula for Macdonald polynomials

$$abla e_k = \sum_{\lambda} (q, t \, \textit{monomial})(LLT \, \textit{polynomial})$$

• Summation over all *k*-by-*k* Dyck paths.

$$abla e_k = \sum_{\lambda} t^{\operatorname{area}(\lambda)} q^{\operatorname{dinv}(\lambda)} (LLT \ polynomial)$$

- Summation over all *k*-by-*k* Dyck paths.
- area(λ) and dinv(λ) statistics of Dyck paths.

$$abla e_k = \sum_\lambda t^{\operatorname{area}(\lambda)} q^{\operatorname{dinv}(\lambda)} \omega \mathcal{G}_{
u(\lambda)}(X;q^{-1})$$

- Summation over all k-by-k Dyck paths.
- area(λ) and dinv(λ) statistics of Dyck paths.
- G_{ν(λ)}(X; q) a symmetric LLT polynomial indexed by a tuple of offset (skew) rows.

$$abla e_k = \sum_\lambda t^{\operatorname{area}(\lambda)} q^{\operatorname{dinv}(\lambda)} \omega \mathcal{G}_{
u(\lambda)}(X;q^{-1})$$

- Summation over all k-by-k Dyck paths.
- area(λ) and dinv(λ) statistics of Dyck paths.
- G_{ν(λ)}(X; q) a symmetric LLT polynomial indexed by a tuple of offset (skew) rows.
- ω a standard involution of symmetric polynomials.
Theorem (Carlsson-Mellit, 2018)

$$abla e_k = \sum_\lambda t^{\mathsf{area}(\lambda)} q^{\mathsf{dinv}(\lambda)} \omega \mathcal{G}_{
u(\lambda)}(X;q^{-1})$$

- Summation over all k-by-k Dyck paths.
- area(λ) and dinv(λ) statistics of Dyck paths.
- G_{ν(λ)}(X; q) a symmetric LLT polynomial indexed by a tuple of offset (skew) rows.
- ω a standard involution of symmetric polynomials.
- Conjectured by (Haiman-Haglund-Loehr-Remmel-Ulyanov, 2002).

Dyck paths

Dyck paths

A Dyck path λ is a south-east lattice path lying below the line segment from (0, k) to (k, 0).

 area(λ) = number of squares above λ but below the path δ of alternating S-E steps.

Dyck paths

- area(λ) = number of squares above λ but below the path δ of alternating S-E steps.
- E.g., above area $(\lambda) = 10$.

Dyck paths

- area(λ) = number of squares above λ but below the path δ of alternating S-E steps.
- E.g., above area $(\lambda) = 10$.
- Catalan-number many Dyck paths for fixed k.

Dyck paths

- area(λ) = number of squares above λ but below the path δ of alternating S-E steps.
- E.g., above area $(\lambda) = 10$.
- Catalan-number many Dyck paths for fixed k. (1,2,5,14,42,...)

dinv

dinv(λ) =# of balanced hooks in diagram below λ .

dinv(λ) =# of balanced hooks in diagram below λ .

Balanced hook is given by a cell below λ satisfying

$$\frac{\ell}{a+1} < 1-\epsilon < \frac{\ell+1}{a}\,, \quad \epsilon \text{ small}.$$

Let $\boldsymbol{\nu} = (\nu_{(1)}, \dots, \nu_{(k)})$ be a tuple of skew shapes. (Skew shape $= \lambda \setminus \mu$)

• The *content* of a box in row y, column x is x - y.

-4	-3	-2	-1	0	1
-3	-2	-1	0	1	2
-2	-1	0	1	2	3
-1	0	1	2	3	4
0	1	2	3	4	5

- The *content* of a box in row y, column x is x y.
- Reading order. label boxes b_1, \ldots, b_n by scanning each diagonal from southwest to northeast, in order of increasing content.

			b_3	b_6
			b_5	b_8
b_1	<i>b</i> ₂			
	b_4	<i>b</i> ₇		

- The *content* of a box in row y, column x is x y.
- Reading order. label boxes b_1, \ldots, b_n by scanning each diagonal from southwest to northeast, in order of increasing content.
- A pair $(a, b) \in \nu$ is attacking if a precedes b in reading order and
 - content(b) = content(a), or
 - content(b) = content(a) + 1 and $a \in \nu_{(i)}, b \in \nu_{(j)}$ with i > j.

			b_3	b_6
			b_5	b_8
b_1	<i>b</i> ₂			
	<i>b</i> 4	<i>b</i> ₇		

Attacking pairs: $(b_2, b_3), (b_3, b_4), (b_4, b_5), (b_4, b_6), (b_5, b_7), (b_6, b_7), (b_7, b_8)$

- The *content* of a box in row y, column x is x y.
- Reading order. label boxes b_1, \ldots, b_n by scanning each diagonal from southwest to northeast, in order of increasing content.
- A pair $(a, b) \in \nu$ is attacking if a precedes b in reading order and
 - content(b) = content(a), or
 - content(b) = content(a) + 1 and $a \in \nu_{(i)}, b \in \nu_{(j)}$ with i > j.

			<i>b</i> ₃	b_6
			b_5	b_8
b_1	<i>b</i> ₂			
	<i>b</i> 4	<i>b</i> ₇		

Attacking pairs: $(b_2, b_3), (b_3, b_4), (b_4, b_5), (b_4, b_6), (b_5, b_7), (b_6, b_7), (b_7, b_8)$

- The *content* of a box in row y, column x is x y.
- Reading order. label boxes b_1, \ldots, b_n by scanning each diagonal from southwest to northeast, in order of increasing content.
- A pair $(a, b) \in \nu$ is attacking if a precedes b in reading order and
 - content(b) = content(a), or
 - content(b) = content(a) + 1 and $a \in \nu_{(i)}, b \in \nu_{(j)}$ with i > j.

			<i>b</i> ₃	b_6
			b_5	b_8
b_1	<i>b</i> ₂			
	<i>b</i> ₄	b_7		

Attacking pairs: $(b_2, b_3), (b_3, b_4), (b_4, b_5), (b_4, b_6), (b_5, b_7), (b_6, b_7), (b_7, b_8)$

- The *content* of a box in row y, column x is x y.
- Reading order. label boxes b_1, \ldots, b_n by scanning each diagonal from southwest to northeast, in order of increasing content.
- A pair $(a, b) \in \nu$ is attacking if a precedes b in reading order and
 - content(b) = content(a), or
 - content(b) = content(a) + 1 and $a \in \nu_{(i)}, b \in \nu_{(j)}$ with i > j.

			b_3	b_6
			b_5	b_8
b_1	<i>b</i> ₂			
	<i>b</i> ₄	<i>b</i> ₇		

Attacking pairs: $(b_2, b_3), (b_3, b_4), (b_4, b_5), (b_4, b_6), (b_5, b_7), (b_6, b_7), (b_7, b_8)$

- The *content* of a box in row y, column x is x y.
- Reading order. label boxes b_1, \ldots, b_n by scanning each diagonal from southwest to northeast, in order of increasing content.
- A pair $(a, b) \in \nu$ is attacking if a precedes b in reading order and
 - content(b) = content(a), or
 - content(b) = content(a) + 1 and $a \in \nu_{(i)}, b \in \nu_{(j)}$ with i > j.

			b_3	b_6
			b_5	b_8
b_1	<i>b</i> ₂			
	<i>b</i> ₄	<i>b</i> ₇		

Attacking pairs: $(b_2, b_3), (b_3, b_4), (b_4, b_5), (b_4, b_6), (b_5, b_7), (b_6, b_7), (b_7, b_8)$

- The *content* of a box in row y, column x is x y.
- Reading order. label boxes b_1, \ldots, b_n by scanning each diagonal from southwest to northeast, in order of increasing content.
- A pair $(a, b) \in \nu$ is attacking if a precedes b in reading order and
 - content(b) = content(a), or
 - content(b) = content(a) + 1 and $a \in \nu_{(i)}, b \in \nu_{(j)}$ with i > j.

			b_3	b_6
			b_5	b_8
b_1	<i>b</i> ₂			
	<i>b</i> 4	<i>b</i> ₇		

Attacking pairs: $(b_2, b_3), (b_3, b_4), (b_4, b_5), (b_4, b_6), (b_5, b_7), (b_6, b_7), (b_7, b_8)$

- The *content* of a box in row y, column x is x y.
- Reading order. label boxes b_1, \ldots, b_n by scanning each diagonal from southwest to northeast, in order of increasing content.
- A pair $(a, b) \in \nu$ is attacking if a precedes b in reading order and
 - content(b) = content(a), or
 - content(b) = content(a) + 1 and $a \in \nu_{(i)}, b \in \nu_{(j)}$ with i > j.

			b_3	b_6
			b_5	b_8
b_1	<i>b</i> ₂			
	<i>b</i> ₄	<i>b</i> ₇		

Attacking pairs: $(b_2, b_3), (b_3, b_4), (b_4, b_5), (b_4, b_6), (b_5, b_7), (b_6, b_7), (b_7, b_8)$

- The *content* of a box in row y, column x is x y.
- Reading order. label boxes b_1, \ldots, b_n by scanning each diagonal from southwest to northeast, in order of increasing content.
- A pair $(a, b) \in \nu$ is attacking if a precedes b in reading order and
 - content(b) = content(a), or
 - content(b) = content(a) + 1 and $a \in \nu_{(i)}, b \in \nu_{(j)}$ with i > j.

			b_3	b_6
			b_5	b_8
b_1	<i>b</i> ₂			
	b_4	<i>b</i> ₇		

Attacking pairs: $(b_2, b_3), (b_3, b_4), (b_4, b_5), (b_4, b_6), (b_5, b_7), (b_6, b_7), (b_7, b_8)$

A semistandard tableau on ν is a map T: ν → Z₊ which restricts to a semistandard tableau on each ν_(i).

The LLT polynomial indexed by a tuple of skew shapes u is

$$\mathcal{G}_{\boldsymbol{\nu}}(\boldsymbol{z}; \boldsymbol{q}) = \sum_{T \in \text{SSYT}(\boldsymbol{\nu})} \boldsymbol{z}^{T},$$

 $\mathbf{z}^T = \prod_{a \in \mathbf{\nu}} z_{T(a)}.$

$$\mathbf{z}^{T} = z_1^2 z_2 z_3 z_4 z_5^2 z_6$$

- A semistandard tableau on ν is a map T: ν → Z₊ which restricts to a semistandard tableau on each ν_(i).
- An attacking inversion in T is an attacking pair (a, b) such that T(a) > T(b).

The LLT polynomial indexed by a tuple of skew shapes u is

$$\mathcal{G}_{\boldsymbol{\nu}}(\boldsymbol{z};q) = \sum_{T \in \text{SSYT}(\boldsymbol{\nu})} q^{\text{inv}(T)} \boldsymbol{z}^{T},$$

- A semistandard tableau on ν is a map T: ν → Z₊ which restricts to a semistandard tableau on each ν_(i).
- An attacking inversion in T is an attacking pair (a, b) such that T(a) > T(b).

The LLT polynomial indexed by a tuple of skew shapes u is

$$\mathcal{G}_{\boldsymbol{\nu}}(\boldsymbol{z};q) = \sum_{T \in \text{SSYT}(\boldsymbol{\nu})} q^{\text{inv}(T)} \boldsymbol{z}^{T},$$

- A semistandard tableau on ν is a map T: ν → Z₊ which restricts to a semistandard tableau on each ν_(i).
- An attacking inversion in T is an attacking pair (a, b) such that T(a) > T(b).

The LLT polynomial indexed by a tuple of skew shapes u is

$$\mathcal{G}_{\boldsymbol{\nu}}(\boldsymbol{z};q) = \sum_{T \in \text{SSYT}(\boldsymbol{\nu})} q^{\text{inv}(T)} \boldsymbol{z}^{T},$$

- A semistandard tableau on ν is a map T: ν → Z₊ which restricts to a semistandard tableau on each ν_(i).
- An attacking inversion in T is an attacking pair (a, b) such that T(a) > T(b).

The LLT polynomial indexed by a tuple of skew shapes u is

$$\mathcal{G}_{\boldsymbol{\nu}}(\boldsymbol{z};q) = \sum_{T \in \text{SSYT}(\boldsymbol{\nu})} q^{\text{inv}(T)} \boldsymbol{z}^{T},$$

- A semistandard tableau on ν is a map T: ν → Z₊ which restricts to a semistandard tableau on each ν_(i).
- An attacking inversion in T is an attacking pair (a, b) such that T(a) > T(b).

The LLT polynomial indexed by a tuple of skew shapes u is

$$\mathcal{G}_{\boldsymbol{\nu}}(\boldsymbol{z};q) = \sum_{T \in \text{SSYT}(\boldsymbol{\nu})} q^{\text{inv}(T)} \boldsymbol{z}^{T},$$

- A semistandard tableau on ν is a map T: ν → Z₊ which restricts to a semistandard tableau on each ν_(i).
- An attacking inversion in T is an attacking pair (a, b) such that T(a) > T(b).

The LLT polynomial indexed by a tuple of skew shapes u is

$$\mathcal{G}_{\boldsymbol{\nu}}(\boldsymbol{z};q) = \sum_{T \in \text{SSYT}(\boldsymbol{\nu})} q^{\text{inv}(T)} \boldsymbol{z}^{T},$$

- A semistandard tableau on ν is a map T: ν → Z₊ which restricts to a semistandard tableau on each ν_(i).
- An attacking inversion in T is an attacking pair (a, b) such that T(a) > T(b).

The LLT polynomial indexed by a tuple of skew shapes u is

$$\mathcal{G}_{\boldsymbol{\nu}}(\boldsymbol{z};q) = \sum_{T \in \text{SSYT}(\boldsymbol{\nu})} q^{\text{inv}(T)} \boldsymbol{z}^{T},$$

- A semistandard tableau on ν is a map T: ν → Z₊ which restricts to a semistandard tableau on each ν_(i).
- An attacking inversion in T is an attacking pair (a, b) such that T(a) > T(b).

The LLT polynomial indexed by a tuple of skew shapes u is

$$\mathcal{G}_{\boldsymbol{\nu}}(\boldsymbol{z};q) = \sum_{T \in \text{SSYT}(\boldsymbol{\nu})} q^{\text{inv}(T)} \boldsymbol{z}^{T},$$

- A semistandard tableau on ν is a map T: ν → Z₊ which restricts to a semistandard tableau on each ν_(i).
- An attacking inversion in T is an attacking pair (a, b) such that T(a) > T(b).

The LLT polynomial indexed by a tuple of skew shapes u is

$$\mathcal{G}_{\boldsymbol{\nu}}(\boldsymbol{z};q) = \sum_{T \in \text{SSYT}(\boldsymbol{\nu})} q^{\text{inv}(T)} \boldsymbol{z}^{T},$$

• $\mathcal{G}_{\nu}(X;q)$ is a symmetric function

*G*_ν(*X*; *q*) is a symmetric function
 *G*_ν(*X*; 1) = *s*_ν(1) ··· *s*_ν(r)

- $\mathcal{G}_{\nu}(X;q)$ is a symmetric function
- $\mathcal{G}_{\nu}(X;1) = s_{\nu^{(1)}} \cdots s_{\nu^{(r)}}$
- \mathcal{G}_{ν} were originally defined by Lascoux, Leclerc, and Thibon to explore connections to Fock space representations of $U_q(\hat{\mathfrak{sl}_r})$

- $\mathcal{G}_{
 u}(X;q)$ is a symmetric function
- $\mathcal{G}_{\nu}(X;1) = s_{\nu^{(1)}} \cdots s_{\nu^{(r)}}$
- \mathcal{G}_{ν} were originally defined by Lascoux, Leclerc, and Thibon to explore connections to Fock space representations of $U_q(\hat{\mathfrak{sl}}_r)$
- G_ν is Schur-positive for any tuple of skew shapes ν [Grojnowski-Haiman, 2007].

Example ∇e_3

$$\lambda \quad q^{\mathrm{dinv}(\lambda)} t^{\mathrm{area}(\lambda)} \quad q^{\mathrm{dinv}(\lambda)} t^{\mathrm{area}(\lambda)} \omega \mathcal{G}_{\nu(\lambda)}(X;q^{-1})$$

Example ∇e_3

$$\lambda \quad q^{\operatorname{dinv}(\lambda)}t^{\operatorname{area}(\lambda)} \quad q^{\operatorname{dinv}(\lambda)}t^{\operatorname{area}(\lambda)}\omega\mathcal{G}_{\nu(\lambda)}(X;q^{-1})$$

Example ∇e_3

$$\lambda \quad q^{\operatorname{dinv}(\lambda)} t^{\operatorname{area}(\lambda)} \quad q^{\operatorname{dinv}(\lambda)} t^{\operatorname{area}(\lambda)} \omega \mathcal{G}_{\nu(\lambda)}(X; q^{-1})$$

$$q^{3}$$

$$q^{2}t$$

$$qt$$

$$qt^{2}$$

$$t^{3}$$
Example ∇e_3

Example ∇e_3

• Entire quantity is q, t-symmetric

Example ∇e_3

- Entire quantity is q, t-symmetric
- Coefficient of $s_{1,1,1}$ in sum is a "(q, t)-Catalan number" $(q^3 + q^2t + qt + qt^2 + t^3)$.

When a problem is too difficult, try generalizing!

When a problem is too difficult, try generalizing!

Algebraic Expression Combinatorial Expression $abla e_k = \sum q, t$ -weighted Dyck paths

When a problem is too difficult, try generalizing!

Algebraic Expression Combinatorial Expression $abla e_k = \sum q, t$ -weighted Dyck paths

What generalizes ∇e_k ?

Algebra $\mathcal{E} \curvearrowright \Lambda =$ symmetric polynomials

Algebra $\mathcal{E} \curvearrowright \Lambda =$ symmetric polynomials

 ${\mathcal E}$ comes from algebraic geometry

Algebra $\mathcal{E} \curvearrowright \Lambda =$ symmetric polynomials

 ${\ensuremath{\mathcal{E}}}$ comes from algebraic geometry

$$\mathcal{E} \underset{\text{v.sp. subalgebra}}{\cong} \underset{m,n \text{ coprime}}{\overset{\text{central}}{\longrightarrow}} \Lambda^{(m,n)}$$

Algebra $\mathcal{E} \curvearrowright \Lambda =$ symmetric polynomials

 $\ensuremath{\mathcal{E}}$ comes from algebraic geometry

$$\mathcal{E} \underset{\text{v.sp. subalgebra}}{\cong} \underset{m,n \text{ coprime}}{\overset{\text{central}}{\bigoplus}} \Lambda^{(m,n)}$$

Algebra $\mathcal{E} \curvearrowright \Lambda =$ symmetric polynomials

 ${\mathcal E}$ comes from algebraic geometry

$$\mathcal{E} \underset{\text{v.sp. subalgebra}}{\cong} \bigoplus \bigoplus_{m,n \text{ coprime}} \Lambda^{(m,n)}$$

Algebra $\mathcal{E} \curvearrowright \Lambda =$ symmetric polynomials

 ${\ensuremath{\mathcal{E}}}$ comes from algebraic geometry

$$\mathcal{E} \underset{\text{v.sp. subalgebra}}{\cong} \bigoplus_{m,n \text{ coprime}} \Lambda^{(m,n)}$$

• For
$$f^{(m,n)} \in \Lambda^{(m,n)}$$
, $\nabla f^{(m,n)} \nabla^{-1} = f^{(m+n,n)}$

 $\Lambda^{(0,1)}\Lambda^{(1,3)}\Lambda^{(2,3)}$ Algebra $\mathcal{E} \curvearrowright \Lambda =$ symmetric polynomials A(3,1) $\Lambda(-1,0)$ A(1,0) \mathcal{E} comes from algebraic geometry $\Lambda(0, -1)$ $\mathcal{E} \underset{\text{v.sp. subalgebra}}{\cong} \overset{\text{central}}{\oplus} \oplus$ Each $\Lambda^{(m,n)} \cong \underset{\text{polynomials}}{\text{symmetric}}$ $\Lambda^{(m,n)}$ m,n coprime

• For $f^{(m,n)} \in \Lambda^{(m,n)}$, $\nabla f^{(m,n)} \nabla^{-1} = f^{(m+n,n)}$ • Algebraic side of Shuffle Theorem $= e_k^{(1,1)} \in \Lambda^{(1,1)}$ acting on $1 \in \Lambda$.

 $\Lambda^{(0,1)}\Lambda^{(1,3)}\Lambda^{(2,3)}$ Algebra $\mathcal{E} \curvearrowright \Lambda =$ symmetric polynomials A(3.1) $\Lambda(-1,0)$ A(1,0) \mathcal{E} comes from algebraic geometry $\Lambda(0, -1)$ $\mathcal{E} \underset{\text{v.sp. subalgebra}}{\cong} \overset{\text{central}}{\oplus} \oplus \bigoplus$ Each $\Lambda^{(m,n)} \cong {}^{\text{symmetric}}$ $\Lambda^{(m,n)}$ polynomials m,n coprime • For $f^{(m,n)} \in \Lambda^{(m,n)}$, $\nabla f^{(m,n)} \nabla^{-1} = f^{(m+n,n)}$ • Algebraic side of Shuffle Theorem $= e_{\mu}^{(1,1)} \in \Lambda^{(1,1)}$ acting on $1 \in \Lambda$. • $e_{\mu}^{(1,1)} \cdot 1 = \nabla e_{\mu}^{(0,1)} \nabla^{-1} \cdot 1 = \nabla e_{\mu}$

 $\Lambda^{(0,1)}\Lambda^{(1,3)}\Lambda^{(2,3)}$ Algebra $\mathcal{E} \curvearrowright \Lambda =$ symmetric polynomials ∧(3,1) $\Lambda(-1,0)$ A(1,0) \mathcal{E} comes from algebraic geometry $\Lambda(0, -1)$ $\mathcal{E} \underset{\text{v.sp. subalgebra}}{\cong} \overset{\text{central}}{\oplus} \oplus$ Each $\Lambda^{(m,n)} \cong \underset{\text{polynomials}}{\text{symmetric}}$ $\Lambda^{(m,n)}$ m,n coprime • For $f^{(m,n)} \in \Lambda^{(m,n)}$, $\nabla f^{(m,n)} \nabla^{-1} = f^{(m+n,n)}$ • Algebraic side of Shuffle Theorem $= e_{\mu}^{(1,1)} \in \Lambda^{(1,1)}$ acting on $1 \in \Lambda$. • $e_{\mu}^{(1,1)} \cdot 1 = \nabla e_{\mu}^{(0,1)} \nabla^{-1} \cdot 1 = \nabla e_{\mu}$

• Can be difficult to work with in general. Can we make it more explicit?

 $R_{+} = \left\{ \alpha_{ij} \mid 1 \leq i < j \leq n \right\} \text{ denotes the set of positive roots for } GL_n,$ where $\alpha_{ij} = \epsilon_i - \epsilon_j$.

 $R_{+} = \{ \alpha_{ij} \mid 1 \leq i < j \leq n \} \text{ denotes the set of positive roots for } GL_n, \text{ where } \alpha_{ij} = \epsilon_i - \epsilon_j.$

A root ideal $\Psi \subseteq R_+$ is an upper order ideal of positive roots.

Define the Weyl symmetrization operator $\sigma: \mathbb{Q}[z_1^{\pm 1}, \dots, z_n^{\pm 1}] \to \mathbb{Q}[z_1^{\pm 1}, \dots, z_n^{\pm 1}]^{S_n}$ by

$$f(\mathbf{z}) \mapsto \sum_{w \in S_n} w\left(\frac{f(\mathbf{z})}{\prod_{i < j} (1 - z_j / z_i)}\right)$$

Define the Weyl symmetrization operator $\sigma : \mathbb{Q}[z_1^{\pm 1}, \dots, z_n^{\pm 1}] \to \mathbb{Q}[z_1^{\pm 1}, \dots, z_n^{\pm 1}]^{S_n}$ by

$$f(\mathbf{z}) \mapsto \sum_{w \in S_n} w\left(\frac{f(\mathbf{z})}{\prod_{i < j} (1 - z_j/z_i)}\right)$$

٠

 $\sigma(z_1^{\gamma_1}\cdots z_n^{\gamma_n})=\pm$ irreducible GL_n character or 0.

Define the Weyl symmetrization operator $\sigma : \mathbb{Q}[z_1^{\pm 1}, \dots, z_n^{\pm 1}] \to \mathbb{Q}[z_1^{\pm 1}, \dots, z_n^{\pm 1}]^{S_n}$ by

$$f(\mathbf{z}) \mapsto \sum_{w \in S_n} w\left(\frac{f(\mathbf{z})}{\prod_{i < j} (1 - z_j/z_i)}\right) \,.$$

 $\sigma(z_1^{\gamma_1}\cdots z_n^{\gamma_n})=\pm$ irreducible GL_n character or 0.

Example

 $\sigma(\mathbf{z}^{111} + \mathbf{z}^{201} + \mathbf{z}^{210} + \mathbf{z}^{3-11}) = \chi_{111} + 0 + \chi_{210} - \chi_{300}$

Define the Weyl symmetrization operator $\sigma : \mathbb{Q}[z_1^{\pm 1}, \dots, z_n^{\pm 1}] \to \mathbb{Q}[z_1^{\pm 1}, \dots, z_n^{\pm 1}]^{S_n}$ by

$$f(\mathbf{z}) \mapsto \sum_{w \in S_n} w\left(\frac{f(\mathbf{z})}{\prod_{i < j} (1 - z_j/z_i)}\right) \,.$$

$$\sigma(z_1^{\gamma_1}\cdots z_n^{\gamma_n})=\pm$$
 irreducible GL_n character or 0.

Example

$$\sigma(z^{111} + z^{201} + z^{210} + z^{3-11}) = \chi_{111} + 0 + \chi_{210} - \chi_{300}$$

• For λ a partition, $\chi_{\lambda}(\boldsymbol{z}) = s_{\lambda}(\boldsymbol{z})$.

Define the Weyl symmetrization operator $\sigma : \mathbb{Q}[z_1^{\pm 1}, \dots, z_n^{\pm 1}] \to \mathbb{Q}[z_1^{\pm 1}, \dots, z_n^{\pm 1}]^{S_n}$ by

$$f(\mathbf{z}) \mapsto \sum_{w \in S_n} w\left(\frac{f(\mathbf{z})}{\prod_{i < j} (1 - z_j/z_i)}\right) \,.$$

$$\sigma(z_1^{\gamma_1}\cdots z_n^{\gamma_n})=\pm$$
 irreducible GL_n character or 0.

Example

$$\sigma(\mathbf{z}^{111} + \mathbf{z}^{201} + \mathbf{z}^{210} + \mathbf{z}^{3-11}) = \chi_{111} + 0 + \chi_{210} - \chi_{300}$$

- For λ a partition, $\chi_{\lambda}(\boldsymbol{z}) = s_{\lambda}(\boldsymbol{z})$.
- $\operatorname{pol}_X \chi_\lambda(\boldsymbol{z}) = \boldsymbol{s}_\lambda$ if $\lambda_I \ge 0$, otherwise 0.

Definition

The Catalanimal indexed by $R_q, R_t, R_{qt} \subseteq R_+$ and $\lambda \in \mathbb{Z}^n$ is

Definition

w

The *Catalanimal* indexed by $R_q, R_t, R_{qt} \subseteq R_+$ and $\lambda \in \mathbb{Z}^n$ is

$$H(R_q, R_t, R_{qt}, \lambda) = \operatorname{pol}_X \sigma \left(\frac{\boldsymbol{z}^{\lambda} \prod_{\alpha \in R_{qt}} \left(1 - qt \boldsymbol{z}^{\alpha} \right)}{\prod_{\alpha \in R_q} \left(1 - q\boldsymbol{z}^{\alpha} \right) \prod_{\alpha \in R_t} \left(1 - t\boldsymbol{z}^{\alpha} \right)} \right),$$

here $\boldsymbol{z}^{\alpha_{ij}} = z_i/z_j$ and $(1 - tz_i/z_j)^{-1} = 1 + tz_i/z_j + t^2 z_i^2/z_j^2 + \cdots$.

Definition

The *Catalanimal* indexed by $R_q, R_t, R_{qt} \subseteq R_+$ and $\lambda \in \mathbb{Z}^n$ is

$$H(R_q, R_t, R_{qt}, \lambda) = \operatorname{pol}_X \sigma \left(\frac{\boldsymbol{z}^{\lambda} \prod_{\alpha \in R_{qt}} \left(1 - qt \boldsymbol{z}^{\alpha} \right)}{\prod_{\alpha \in R_q} \left(1 - q\boldsymbol{z}^{\alpha} \right) \prod_{\alpha \in R_t} \left(1 - t \boldsymbol{z}^{\alpha} \right)} \right),$$

where
$$\mathbf{z}^{\alpha_{ij}} = z_i/z_j$$
 and $(1 - tz_i/z_j)^{-1} = 1 + tz_i/z_j + t^2 z_i^2/z_j^2 + \cdots$.

With n = 3, $R_+ =$ $H(R_+, R_+, \{\alpha_{13}\}, (111)) =$

Definition

The *Catalanimal* indexed by $R_q, R_t, R_{qt} \subseteq R_+$ and $\lambda \in \mathbb{Z}^n$ is

$$H(R_q, R_t, R_{qt}, \lambda) = \operatorname{pol}_X \sigma \left(\frac{\boldsymbol{z}^{\lambda} \prod_{\alpha \in R_{qt}} \left(1 - qt \boldsymbol{z}^{\alpha} \right)}{\prod_{\alpha \in R_q} \left(1 - q\boldsymbol{z}^{\alpha} \right) \prod_{\alpha \in R_t} \left(1 - t\boldsymbol{z}^{\alpha} \right)} \right),$$

where
$$\mathbf{z}^{\alpha_{ij}} = z_i/z_j$$
 and $(1 - tz_i/z_j)^{-1} = 1 + tz_i/z_j + t^2 z_i^2/z_j^2 + \cdots$.

With n = 3, $R_{+} =$ $H(R_{+}, R_{+}, \{\alpha_{13}\}, (111)) = \operatorname{pol}_{X} \sigma \left(\frac{z^{111}(1 - qtz_{1}/z_{3})}{\prod_{1 \le i < j \le 3} (1 - qz_{i}/z_{j})(1 - tz_{i}/z_{j})} \right)$ $= s_{111} + (q + t + q^{2} + qt + t^{2})s_{21} + (qt + q^{3} + q^{2}t + qt^{2} + t^{3})s_{3}$ $= \omega \nabla e_{3}.$

Let $R_+ = \{ \alpha_{ij} \mid 1 \le i < j \le l \}$ and $R_+^0 = \{ \alpha_{ij} \in R_+ \mid i+1 < j \}.$

Why?

Let $R_+ = \{ \alpha_{ij} \mid 1 \le i < j \le l \}$ and $R_+^0 = \{ \alpha_{ij} \in R_+ \mid i+1 < j \}.$

Proposition

For $(m, n) \in \mathbb{Z}^2_+$ coprime,

$$e_k^{(m,n)} \cdot 1 = H(R_+, R_+, R_+^0, \mathbf{b})$$

for

Let $R_+ = \{ \alpha_{ij} \mid 1 \le i < j \le l \}$ and $R_+^0 = \{ \alpha_{ij} \in R_+ \mid i+1 < j \}.$

Proposition

For $(m, n) \in \mathbb{Z}^2_+$ coprime,

$$e_k^{(m,n)} \cdot 1 = H(R_+, R_+, R_+^0, \mathbf{b})$$

for $\mathbf{b} = (b_0, \dots, b_{km-1})$ satisfying $b_i =$ the number of south steps on vertical line x = i of highest lattice path under line $y + \frac{n}{m}x = n$.

 $\delta = highest Dyck path.$

Manipulating Catalanimal \implies a proof of the Rational Shuffle Theorem + a generalization.

Theorem (Blasiak-Haiman-Morse-Pun-S., 2023)

Given $r, s \in \mathbb{R}_{>0}$ such that p = s/r irrational, take $\mathbf{b} = (b_1, \dots, b_l) \in \mathbb{Z}^l$ to be the south step sequence of highest path δ under the line y + px = s.

Manipulating Catalanimal \implies a proof of the Rational Shuffle Theorem + a generalization.

Theorem (Blasiak-Haiman-Morse-Pun-S., 2023)

Given $r, s \in \mathbb{R}_{>0}$ such that p = s/r irrational, take $\mathbf{b} = (b_1, \dots, b_l) \in \mathbb{Z}^l$ to be the south step sequence of highest path δ under the line y + px = s.

$$H(R_+, R_+, R_+^0, \mathbf{b})$$

Manipulating Catalanimal \implies a proof of the Rational Shuffle Theorem + a generalization.

Theorem (Blasiak-Haiman-Morse-Pun-S., 2023)

Given $r, s \in \mathbb{R}_{>0}$ such that p = s/r irrational, take $\mathbf{b} = (b_1, \dots, b_l) \in \mathbb{Z}^l$ to be the south step sequence of highest path δ under the line y + px = s.

$$H(R_+, R_+, R_+^0, \mathbf{b}) =$$

Manipulating Catalanimal \Longrightarrow a proof of the Rational Shuffle Theorem + a generalization.

Theorem (Blasiak-Haiman-Morse-Pun-S., 2023)

Given $r, s \in \mathbb{R}_{>0}$ such that p = s/r irrational, take $\mathbf{b} = (b_1, \dots, b_l) \in \mathbb{Z}^l$ to be the south step sequence of highest path δ under the line y + px = s.

$$H(R_+,R_+,R_+^0,\mathbf{b})=\sum_{\lambda} \qquad \qquad \omega \mathcal{G}_{
u(\lambda)}(X;q^{-1})$$

where summation is over all lattice paths under the line y + px = s,

Manipulating Catalanimal \Longrightarrow a proof of the Rational Shuffle Theorem + a generalization.

Theorem (Blasiak-Haiman-Morse-Pun-S., 2023)

Given $r, s \in \mathbb{R}_{>0}$ such that p = s/r irrational, take $\mathbf{b} = (b_1, \dots, b_l) \in \mathbb{Z}^l$ to be the south step sequence of highest path δ under the line y + px = s.

$$H(R_+,R_+,R_+^0,\mathbf{b})=\sum_\lambda t^{\operatorname{area}(\lambda)}q^{\operatorname{dinv}_p(\lambda)}\omega\mathcal{G}_{
u(\lambda)}(X;q^{-1})$$

where summation is over all lattice paths under the line y + px = s,

Why stop at $e_k^{(m,n)}$?

Why stop at $e_k^{(m,n)}$?

For which symmetric functions f can we find a Catalanimal such that $f^{(m,n)} \cdot 1 =$ a Catalanimal?
Why stop at $e_k^{(m,n)}$?

For which symmetric functions f can we find a Catalanimal such that $f^{(m,n)} \cdot 1 =$ a Catalanimal?

Answer: for f equal to any LLT polynomial!

Why stop at $e_k^{(m,n)}$?

For which symmetric functions f can we find a Catalanimal such that $f^{(m,n)} \cdot 1 =$ a Catalanimal?

Answer: for f equal to any LLT polynomial!

Special case: $\mathcal{G}_{\nu}^{(1,1)} \cdot 1 = \nabla \mathcal{G}_{\nu}(X;q).$

For a tuple of skew shapes ν , the *LLT Catalanimal* $H_{\nu} = H(R_q, R_t, R_{qt}, \lambda)$ is determined by

• $R_+ \supseteq R_q \supseteq R_t \supseteq R_{qt}$,

For a tuple of skew shapes ν , the *LLT Catalanimal* $H_{\nu} = H(R_q, R_t, R_{qt}, \lambda)$ is determined by

- $R_+ \supseteq R_q \supseteq R_t \supseteq R_{qt}$,
- $R_+ \setminus R_q =$ pairs of boxes in the same diagonal in the same shape,
- $R_q \setminus R_t$ = the attacking pairs,
- $R_t \setminus R_{qt}$ = pairs going between adjacent diagonals,

For a tuple of skew shapes ν , the *LLT Catalanimal* $H_{\nu} = H(R_q, R_t, R_{qt}, \lambda)$ is determined by

- $R_+ \supseteq R_q \supseteq R_t \supseteq R_{qt}$,
- $R_+ \setminus R_q =$ pairs of boxes in the same diagonal in the same shape,
- $R_q \setminus R_t$ = the attacking pairs,
- $R_t \setminus R_{qt}$ = pairs going between adjacent diagonals,
- λ : fill each diagonal D of ν with $1 + \chi(D \text{ contains a row start}) - \chi(D \text{ contains a row end}).$ Listing this filling in reading order gives λ .

LLT Catalanimals

- $R_+\setminus R_q=$ pairs of boxes in the same diagonal in the same shape,
- $R_q \setminus R_t$ = the attacking pairs,
- $R_t \setminus R_{qt}$ = pairs going between adjacent diagonals,
- $R_{qt} =$ all other pairs,

 λ : fill each diagonal D of $oldsymbol{
u}$ with

 $1 + \chi(D \text{ contains a row start}) - \chi(D \text{ contains a row end}).$

			<i>b</i> ₃	b_6
			b_5	b_8
b_1	b_2			
	b ₄	<i>b</i> ₇		

ν

LLT Catalanimals

- $R_+\setminus R_q=$ pairs of boxes in the same diagonal in the same shape,
- $R_q \setminus R_t$ = the attacking pairs,
- $R_t \setminus R_{qt}$ = pairs going between adjacent diagonals,
- $R_{qt} =$ all other pairs,

 λ : fill each diagonal D of $oldsymbol{
u}$ with

 $1 + \chi(D \text{ contains a row start}) - \chi(D \text{ contains a row end}).$

 $\lambda,$ as a filling of $\pmb{\nu}$

Theorem (Blasiak-Haiman-Morse-Pun-S., 2024)

Let ν be a tuple of skew shapes and let $H_{\nu} = H(R_q, R_t, R_{qt}, \lambda)$ be the associated LLT Catalanimal. Then

$$\nabla \mathcal{G}_{\boldsymbol{\nu}}(X; \boldsymbol{q}) = c_{\boldsymbol{\nu}} \, \omega \mathcal{H}_{\boldsymbol{\nu}}$$
$$= c_{\boldsymbol{\nu}} \, \omega \boldsymbol{\sigma} \left(\frac{\boldsymbol{z}^{\lambda} \prod_{\alpha \in R_{qt}} \left(1 - qt \, \boldsymbol{z}^{\alpha} \right)}{\prod_{\alpha \in R_{q}} \left(1 - q \, \boldsymbol{z}^{\alpha} \right) \prod_{\alpha \in R_{t}} \left(1 - t \, \boldsymbol{z}^{\alpha} \right)} \right)$$

for some $c_{\nu} \in \pm q^{\mathbb{Z}} t^{\mathbb{Z}}$.

• Remember
$$abla ilde{H}_{\mu} = q^{n(\mu)} t^{n(\mu^*)} ilde{H}_{\mu}.$$

- Remember $\nabla \tilde{H}_{\mu} = q^{n(\mu)} t^{n(\mu^*)} \tilde{H}_{\mu}$.
- We have a formula for $\nabla \mathcal{G}_{\nu}$.

- Remember $abla ilde{H}_{\mu} = q^{n(\mu)} t^{n(\mu^*)} ilde{H}_{\mu}.$
- We have a formula for $\nabla \mathcal{G}_{\boldsymbol{\nu}}$.
- Does there exist formula $ilde{H}_{\mu} = \sum_{m{
 u}} a_{\mum{
 u}}(q,t) \mathcal{G}_{m{
 u}}$?

- Remember $abla ilde{H}_{\mu} = q^{n(\mu)} t^{n(\mu^*)} ilde{H}_{\mu}.$
- We have a formula for $\nabla \mathcal{G}_{\boldsymbol{\nu}}$.
- Does there exist formula $ilde{H}_{\mu} = \sum_{
 u} a_{\mu
 u}(q,t) \mathcal{G}_{
 u}$? Yes!

- **1** Background on symmetric functions and Macdonald polynomials
- Shuffle theorems, combinatorics, and LLT polynomials
- **O** A new formula for Macdonald polynomials

Haglund-Haiman-Loehr formula example

$$ilde{H}_{\mu}(X;q,t) = \sum_{D} \left(\prod_{u \in D} q^{-\operatorname{arm}(u)} t^{\operatorname{leg}(u)+1}\right) \mathcal{G}_{\boldsymbol{\nu}(\mu,D)}(X;q)$$

Haglund-Haiman-Loehr formula example

 $ilde{H}_{\mu}(X;q,t) = \sum_{D} \left(\prod_{u \in D} q^{-\operatorname{arm}(u)} t^{\operatorname{leg}(u)+1} \right) \mathcal{G}_{\nu(\mu,D)}(X;q)$

b 3
b_5

 μ

• Take HHL formula $\tilde{H}_{\mu} = \sum_{D} a_{\mu,D} \mathcal{G}_{\nu(\mu,D)}$ and apply $\omega \nabla$.

- Take HHL formula $\tilde{H}_{\mu} = \sum_{D} a_{\mu,D} \mathcal{G}_{\nu(\mu,D)}$ and apply $\omega \nabla$.
- By construction, all the LLT Catalanimals $H_{\nu(\mu,D)}$ appearing on the RHS will have the same root ideal data (R_q, R_t, R_{qt}) .

- Take HHL formula $\tilde{H}_{\mu} = \sum_{D} a_{\mu,D} \mathcal{G}_{\nu(\mu,D)}$ and apply $\omega \nabla$.
- By construction, all the LLT Catalanimals H_{ν(μ,D)} appearing on the RHS will have the same root ideal data (R_q, R_t, R_{qt}).
- Collect terms to get ∏_{(b_i,b_j)∈V(μ)}(1 − q^{arm(b_i)+1}t^{−leg(b_i)}z_i/z_j) factor for V(μ) the set of vertical dominoes (b_i, b_j) in μ.

$$\tilde{\mathcal{H}}_{\mu} = \omega \operatorname{pol}_{X} \sigma \left(z_{1} \cdots z_{n} \frac{\prod_{\alpha_{ij} \in V(\mu)} \left(1 - q^{\operatorname{arm}(b_{i})+1} t^{-\operatorname{leg}(b_{i})} z_{i}/z_{j} \right) \prod_{\alpha \in \widehat{R}_{\mu}} \left(1 - qt \boldsymbol{z}^{\alpha} \right)}{\prod_{\alpha \in R_{+}} \left(1 - q\boldsymbol{z}^{\alpha} \right) \prod_{\alpha \in R_{\mu}} \left(1 - t\boldsymbol{z}^{\alpha} \right)} \right)$$

The root ideal R_{μ}

$$\begin{aligned} &R_{\mu} := \big\{ \alpha_{ij} \in R_{+} \mid \text{south}(b_{i}) \preceq b_{j} \big\}, \\ &\widehat{R}_{\mu} := \big\{ \alpha_{ij} \in R_{+} \mid \text{south}(b_{i}) \prec b_{j} \big\}, \\ &R_{\mu} \setminus \widehat{R}_{\mu} \leftrightarrow V(\mu) = \text{vertical dominoes in } \mu \end{aligned}$$

Example:

The root ideal R_{μ}

$$\begin{aligned} &R_{\mu} := \big\{ \alpha_{ij} \in R_{+} \mid \text{south}(b_{i}) \preceq b_{j} \big\}, \\ &\widehat{R}_{\mu} := \big\{ \alpha_{ij} \in R_{+} \mid \text{south}(b_{i}) \prec b_{j} \big\}, \\ &R_{\mu} \setminus \widehat{R}_{\mu} \leftrightarrow V(\mu) = \text{vertical dominoes in } \mu \end{aligned}$$

Example:

Remark

$$ilde{H}_{\mu}(X; 0, t) = \omega \operatorname{pol}_{X} \sigma \Big(rac{z_{1} \cdots z_{n}}{\prod_{\alpha \in R_{\mu}} (1 - t \boldsymbol{z}^{\alpha})} \Big)$$

Example

Example

numerator factors $1 - q^{\operatorname{arm}+1} t^{-\operatorname{leg}} z_i / z_i$

A positivity conjecture

What can this formula tell us that other formulas for Macdonald polynomials do not?

A positivity conjecture

What can this formula tell us that other formulas for Macdonald polynomials do not?

$$\tilde{H}_{\mu}^{(s)} = \omega \operatorname{pol}_{X} \sigma \left((z_{1} \cdots z_{n})^{s} \frac{\prod_{\alpha_{ij} \in R_{\mu} \setminus \widehat{R}_{\mu}} (1 - q^{\operatorname{arm}(b_{i})+1} t^{-\operatorname{leg}(b_{i})} z_{i}/z_{j}) \prod_{\alpha \in \widehat{R}_{\mu}} (1 - qt \boldsymbol{z}^{\alpha})}{\prod_{\alpha \in R_{\mu}} (1 - q\boldsymbol{z}^{\alpha}) \prod_{\alpha \in R_{\mu}} (1 - t\boldsymbol{z}^{\alpha})} \right)$$

Conjecture (Blasiak-Haiman-Morse-Pun-S.)

For any partition μ and positive integer *s*, the symmetric function $\tilde{H}_{\mu}^{(s)}$ is Schur positive. That is, the coefficients in

$$ilde{H}^{(s)}_{\mu} = \sum_{
u} extsf{K}^{(s)}_{
u,\mu}(q,t) \, extsf{s}_{
u}$$

satisfy $\mathcal{K}_{
u,\mu}^{(s)}(q,t)\in\mathbb{N}[q,t].$

Symmetric functions, representation theory, and combinatorics

Symmetric function	Representation theory	Combinatorics
s_λ	Irreducible V_λ	$SSYT(\lambda)$
$ ilde{H}_{\lambda}(X;q,t)$	Garsia-Haiman M_λ	HHL
∇e_n	DH_n	Shuffle theorem
$H(R_+, R_+, R_+^0, \mathbf{b})$??	Generalized shuffle theorem
$ ilde{H}^{(s)}_{\lambda}(X;q,t)$??	??

Thank you!

Blasiak, Jonah, Mark Haiman, Jennifer Morse, Anna Pun, and George H. Seelinger. 2023/ed. A Shuffle Theorem for Paths Under Any Line, Forum of Mathematics, Pi 11, e5, DOI 10.1017/fmp.2023.4.

_____. 2024. LLT Polynomials in the Schiffmann Algebra, Journal für die reine und angewandte Mathematik (Crelles Journal) 811, 93–133, DOI 10.1515/crelle-2024-0012.

_____. 2025. A Raising Operator Formula for Macdonald Polynomials, Forum of Math, Sigma 13, e47, DOI 10.1017/fms.2025.8.

Burban, Igor and Olivier Schiffmann. 2012. On the Hall algebra of an elliptic curve, I, Duke Math. J. 161, no. 7, 1171–1231, DOI 10.1215/00127094-1593263. MR2922373

Carlsson, Erik and Mellit, Anton. 2018. A Proof of the Shuffle Conjecture 31, no. 3, 661–697, DOI 10.1090/jams/893.

Feigin, B. L. and Tsymbaliuk, A. I. 2011. Equivariant K-theory of Hilbert Schemes via Shuffle Algebra, Kyoto J. Math. 51, no. 4, 831–854.

Garsia, Adriano M. and Mark Haiman. 1993. A graded representation model for Macdonald's polynomials, Proc. Nat. Acad. Sci. U.S.A. 90, no. 8, 3607–3610, DOI 10.1073/pnas.90.8.3607. MR1214091

Haglund, J., M. Haiman, and N. Loehr. 2005. A Combinatorial Formula for Macdonald Polynomials 18, no. 3, 735–761 (electronic).

Haglund, J. and Haiman, M. and Loehr. 2005. A combinatorial formula for the character of the diagonal coinvariants, Duke Math. J. 126, no. 2, 195–232, DOI 10.1215/S0012-7094-04-12621-1.

Haiman, Mark. 2001. Hilbert schemes, polygraphs and the Macdonald positivity conjecture, J. Amer. Math. Soc. 14, no. 4, 941–1006, DOI 10.1090/S0894-0347-01-00373-3. MR1839919

_____. 2002. Vanishing theorems and character formulas for the Hilbert scheme of points in the plane, Invent. Math. 149, no. 2, 371–407, DOI 10.1007/s002220200219. MR1918676

Lascoux, Alain, Bernard Leclerc, and Jean-Yves Thibon. 1995. Ribbon tableaux, Hall-Littlewood functions and unipotent varieties, Sém. Lothar. Combin. 34, Art. B34g, approx. 23. MR1399754

Mellit, Anton. 2021. Toric Braids and (m,n)-Parking Functions, Duke Math. J. 170, no. 18, 4123–4169, DOI 10.1215/00127094-2021-0011.

Negut, Andrei. 2014. The shuffle algebra revisited, Int. Math. Res. Not. IMRN 22, 6242–6275, DOI 10.1093/imrn/rnt156. MR3283004

Schiffmann, Olivier and Vasserot, Eric. 2013. The Elliptic Hall Algebra and the K-theory of the Hilbert Scheme of A2, Duke Mathematical Journal 162, no. 2, 279–366, DOI 10.1215/00127094-1961849.

Schiffmann to Shuffle

• Shuffle algebra S given by the image of Laurent polynomials $\phi \in \Bbbk[x_1^{\pm 1}, \dots, x_l^{\pm 1}]$ via map

$$H_{q,t}: \phi \mapsto \sum_{w \in S_I} w \left(\frac{\phi \prod_{i < j} (1 - qtx_i/x_j)}{\prod_{i < j} ((1 - x_j/x_i)(1 - qx_i/x_j)(1 - tx_i/x_j))} \right)$$

- (Schiffmann-Vasserot, 2013) There exists isomorphism $\psi: S \to \mathcal{E}^+$.
- (Negut, 2014) gives well-defined

$$D_{b_1,...,b_l} = \psi \left(H_{q,t} \left(\frac{x_1^{b_1} \cdots x_l^{b_l}}{\prod_{i=1}^{l-1} (1 - qtx_i/x_{i+1})} \right) \right)$$

Key Relationship (BHMPS, 2023)

For $\zeta = \psi(\phi) \in \mathcal{E}^+$,

 $\omega(\zeta \cdot 1) = \omega \operatorname{pol}_X H_{q,t}(\phi).$

Cauchy Identity

(Twisted) non-symmetric Hall-Littlewood polynomials E^σ_λ(x; q) defined via Demazure-Lusztig operators.

$$T_i = qs_i + (1-q)rac{s_i - 1}{1 - x_{i+1}/x_i}$$

• Dual basis F_{λ}^{σ} .

Cauchy identity

$$\frac{\prod_{i < j} (1 - q \, t \, x_i \, y_j)}{\prod_{i \le j} (1 - t \, x_i \, y_j)} = \sum_{\mathbf{a} \ge 0} t^{|\mathbf{a}|} \, E_{\mathbf{a}}^{\sigma}(x_1, \ldots, x_l; \, q^{-1}) \, F_{\mathbf{a}}^{\sigma}(y_1, \ldots, y_l; \, q),$$

•
$$\mathcal{L}_{\beta/\alpha} = H_q(w_0(F_{\beta}^{\sigma^{-1}}(x;q)\overline{E_{\alpha}^{\sigma^{-1}}(x;q)}))$$