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1. INTRODUCTION

First, we recall some definitions.

1.1. Definition. An N x N matrix U is unitary if UU* = Iy where U* is the
conjugate transpose of U. Then, U(N) is the compact Lie group of all N x N
unitary matrices. Since U(N — 1) < U(N) via a canonical embedding, we
also define

U(co) := | U(N)
N=1

that is, U(oo) are all infinite N x N unitary matrices that differ from the
identity matrix only in a fixed number of positions.

1.2. Definition. A normalized character of U(N) is a function x: U(N) — C
such that

(a) x(e) =1 (normalized),
(b) x(ab) = x(ba) (constant on conjugacy classes),

(c) (Z?X(ai))(zcjx(aj)) = Zciéjx(aiajfl) > 0 (nonnegative defi-
nite),
(d) x is continuous.

Normalized characters form a convex set since tx1 + (1 — t)x2 meets all
the axioms of a normalized character for all ¢ € [0,1]. Then, we can discuss
the following notion.

1.3. Definition. An extreme character x: U(N) — C is a normalized char-
acter such that x # tx1+(1—t)x2 for any t € (0, 1) for normalized characters

X1, X2 # X
1.4. Definition. The N-dimensional torus is
TV := {(z1,...,2n) € CV | 23] = 1}
and lies in U(N) as diagonal matrices. The finitary torus is TF, = Ux-, TV.
Recall one of our main goals is to understand the following theorem.
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1.5. Theorem (Edrei-Voiculescu). Extreme characters of U(oo) are func-
tions x: TJ?fn — C depending on countably many parameters

af = (af >y >+ >0);
BE=(BE> B > >0);

such that
daf+> ar +) BT+ B <o, BF+B <1
Furthermore, these functions have the form
o
Xaz g+ A% (x1,29,...) = H D+ gt o+ (x5)
j=1

where @+ g+ +: T — C is the continuous function

(e T (1 + B (x—1) 1487 (z71-1)
e ORI | | <1 —af(x—1) 1-a (z'=1))"

i=1 %

1.6. Goal. In this presentation, we will outline two very special examples of
this parameterization, namely when
(a) BT =(B,0,0,...),8” =at =(0,0,...),yF =0 for B €[0,1] so that
o0
Dot gt 4t (1) = 14 Bz — 1) = Xat gt 42 (w1, 72,...) = [[(L + Bla; — 1))
j=1
(b) at = (a,0,0,...),F =at =(0,0,...),yF =0 for « € [0, 1] so that
s 1
= Nemsas (o) = Il

ot st (0) = TG T

2. SYMMETRIC FUNCTIONS

In the last lecture, we introduced the following.

2.1. Definition. Given a sequence of integers Ay > Ay > --- > Ay, the
Schur polynomial is given by

XNi+N—i\N
B det (] )

S)\(.’L'l TN wi=1
Sy = N_;
det(z; z)fyjzl

Also, if A has Ay > 0, we can use “Littlewood’s Combinatorial Description”
of Schur functions

2.2. Proposition. Given a sequence of integers \y > Ay > -+ > Ay > 0,

sk(xlv"'ax]\/') = Z :UWt(T)
TeSSYT(N)



i T
where ™ H]1x of i’sin T

2.3. Example.
3(2,1)(96'1, T3) = x%HCz + xlx%
1|1 \+ 1 2\
2 2

We also proved that

2.4. Theorem. The irreducible representations of U(N) are in one-to-one
correspondence with {\ € ZN | A\ > --- > An} where the character of
representation Ty of U(N) corresponding to A has character given by

Z1
Tr T)\ :8)\(1‘1,....%']\[)
TN
We will work with two special cases of the Schur polynomials.

2.5. Definition. Let ey, (21,...,7N) := s¢m)(71,...,2N) be the elementary
symmetric polynomials.

2.6. Example. Using the semistandard Young tableaux formula for Schur
functions (Littlewood’s combinatorial description), we compute

(a)

ea(z1, x2, x3) =T122 + T1T3 + T2X3

e3(z1, 2, x3) =T1T273

2.7. Remark. ey(z1,...,zxN) encodes character of the “determinant repre-
sentation” of U(N), that is

T(U)v = (detU)v = z122 - TNV



since the determinant is just the product of the eigenvalues. More generally,
em(z1,...,zN) encodes the representation induced by the U(N)-action on

N CN:
U-(vi A Avp) = Uvi A+ ANUvyp,)

Importantly, we also compute, generalizing our example above

2.8. Proposition. For 0 <m <n,

em(x1>$27"'7$n) = Z th(T) = Z xl

TeSSYT((1™)) filled with elements of {1,...,n} IC{1,...,n},|I|l=m

where z! = [Lic; zi and consequently,

Proof. To see this, we simply observe that a single column semistandard
tableau with m rows filled with letters {1,...,n} is a choice of m distinct
elements of {1,...,n} since columns must be strictly increasing. O

2.9. Definition. Let hy(21,...,2N) = S4n)(T1,...,2n) be the complete
homogeneous symmetric polynomials.

2.10. Example. Using again our tableaux formula for Schur functions, we
compute

(a)

2 2
ho(z1, x2) = 7 + x122 + X5

HEHNEENEE

(b)
ho(x1, T2, 13) = 22 + 2129 + 1173 + T3 + Tow3 + T3
L[] fefef e ] 2]2] [2]s] [3]3]
2.11. Proposition. For 0 <m <n,

hm(l'l, o, ... ,l'n) = Z th(T) — Z J;I

TeSSYT((m)) filled with elements of {1,...,n} I multiset of {1,...,n},|I|l=m

where z! = [Lic; zi and consequently,

hn(1,...,1)
~—

n

= Number of ways to choose a multiset of size m from n things

(=)



2.12. Remark. The combinatorics of the identity above follow by considering
a “stars and bars” approach, namely, both expressions are in bijection with
the number of ways to place n — 1 bars among m stars, allowing bars to be
consecutive with each other.

{1,1,1,2,4,5} — * x| x || % |*

=0

be the number of ways to choose a multiset of size m from n things.

2.13. Definition. Let

3. Two EXAMPLES OF U(co) CHARACTERS

Now, we wish to take a sequence of U(N) characters to get a character of
U(o0).

3.1. Definition. We say that a sequence of central functions fy (i.e. fn
only depends on the eigenvalues of the input) on U(N) converge to a central
function f on U(oo) if, for every fixed K, we have

fn(z, . e, L, 100001 = foeg, ..o 2k, 1,100
uniformly on the K-torus TX of diagonal matrices.

3.2. Proposition. Let L: N — N be a sequence such that L(N)/N — [ €
[0,1] as N — oco. Then,

eL(N)(xla cees
ervy(L, .-+,

11:1)\/) — H(l +B(z; — 1)), (x1,22,...) € T??n
i=1

Proof. Fix K < N. Then,

eL(N)(l'l,...,:L‘K,l,...,l)

— Z 2Vt (Tl<k)

TESSYT((1L(N))) labelled with {1,...,N}

= Z #{N sequences with sum L(N) that start with (ey, ..., ex)}al )

binary K sequences €

S G

binary K sequences €

where the last equality comes from considering how to fill tableaux of the
form



Fill 3% ¢ boxes with {1,..., K}

Fill L(N) — 32K | € boxes with {K +1,..., N}

= (egf&v}'('{,gfqéf,lfj ey () ()

binary K sequences €

N-K N\  (N-K) (L(N))! (N — L(N))!
(L( '>/<L > B T, (L(N) = 208, ) g (N=L(N) = (K =¥ E, &)
N=oo 3516 (1 — B)Xi1€ since L(N)/N —

Thus, taking the limit as N — oo on our ratio, we get

K
S el pEm - ) s = (- B) + Ba)
=1

binary K sequences €

and so, taking K — oo completes the proof. O

3.3. Remark. An astute reader may notice that (1—B)K_Zf(:1 € Bt € rep-
resenents the probability of Zfil €; successes in K trials where each attempt
has probability of success 5. One can use “de Finetti’s theorem” in order to
derive the proposition directly from this observation. See [Pet12|§4.1.10 for
this approach.

3.4. Proposition. Let L: N — N be a sequence such that L(N)/N — « €
[0,1] as N — oo. Then,

oo

TN) 1
—_ ... eTs
1) %Hl_a(xz_l)7 (x17[]:2, ) e fZTL

hL(N)(xl, ey
hravy (L,

Proof. We proceed much as in the proposition above. For a fixed K < N,
we have

hL(N)(aﬁl, ey LK, 1, ey 1)

= Z #{N sequences with sum L(N) starting with (ei,...,ex)}a" -+ 2%
eeNK

N-K >> . ex
P (T
where the last line comes from thinking about

EESEEEEE NSNS NN NN NN NN NN NN |

Ve Vv
Fill K | ¢;boxes Fill N—3"K ¢ boxes
with {1,...,K} with {K+1,...,N}



and so
hrovy(@1, -2, 15000, 1)

hvy(1,...,1)
(O T4
Consider that, for fixed K < N, we have

(oo =5, ) (o)

N-K+LIN)-Y% & —1\ ,/N+L{N) -1

_< LIN) =K & >/< ( >

_(N+L(N) - K -y e— 1) (L))
(N + L(N) = 1)t (L(N) =>e)! (N—-K-1)

(L(N))=<NK

(N 4 L(N))K+2e

L

~

Thus,
h Ti1,...,TK,1,...,1 1 K i
lim 01 K )=Z< ) < o ) 2K
N—o00 hL(N)(lv ,1) . 14+« 14+«
_ﬁ11+a 1+a"" 1+ a
W1 1
ol § St
i1 + o —ml’z
s
Al 46— any
=1
So, taking K — oo completes the proof. O
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