1. INTRODUCTION

First, we recall some definitions.

1.1. Definition. An \(N \times N \) matrix \(U \) is unitary if \(UU^* = I_N \) where \(U^* \) is the conjugate transpose of \(U \). Then, \(U(N) \) is the compact Lie group of all \(N \times N \) unitary matrices. Since \(U(N-1) \hookrightarrow U(N) \) via a canonical embedding, we also define

\[
U(\infty) := \bigcup_{N=1}^{\infty} U(N)
\]

that is, \(U(\infty) \) are all infinite \(\mathbb{N} \times \mathbb{N} \) unitary matrices that differ from the identity matrix only in a fixed number of positions.

1.2. Definition. A normalized character of \(U(N) \) is a function \(\chi: U(N) \to \mathbb{C} \) such that

(a) \(\chi(e) = 1 \) (normalized),
(b) \(\chi(ab) = \chi(ba) \) (constant on conjugacy classes),
(c) \(\left(\sum c_i \chi(a_i) \right) \left(\sum c_j \chi(a_j) \right) = \sum c_i c_j \chi(a_i a_j^{-1}) \geq 0 \) (nonnegative definite),
(d) \(\chi \) is continuous.

Normalized characters form a convex set since \(t \chi_1 + (1-t) \chi_2 \) meets all the axioms of a normalized character for all \(t \in [0,1] \). Then, we can discuss the following notion.

1.3. Definition. An extreme character \(\chi: U(N) \to \mathbb{C} \) is a normalized character such that \(\chi \neq t \chi_1 + (1-t) \chi_2 \) for any \(t \in (0,1) \) for normalized characters \(\chi_1, \chi_2 \neq \chi \).

1.4. Definition. The \(N \)-dimensional torus is

\[
\mathbb{T}^N := \{ (x_1, \ldots, x_N) \in \mathbb{C}^N \mid |x_i| = 1 \}
\]

and lies in \(U(N) \) as diagonal matrices. The finitary torus is \(\mathbb{T}_{\text{fin}}^\infty := \bigcup_{N=1}^{\infty} \mathbb{T}^N \).

Recall one of our main goals is to understand the following theorem.
1.5. **Theorem** (Edrei-Voiculescu). Extreme characters of $U(\infty)$ are functions $\chi : T^\infty_{fin} \to \mathbb{C}$ depending on countably many parameters

$$\begin{cases}
\alpha^\pm = (\alpha_1^\pm \geq \alpha_2^\pm \geq \cdots \geq 0);\\
\beta^\pm = (\beta_1^\pm \geq \beta_2^\pm \geq \cdots \geq 0);\\
\gamma^\pm \geq 0
\end{cases}$$

such that

$$\sum_i \alpha_i^+ + \sum_i \alpha_i^- + \sum_i \beta_i^+ + \sum_i \beta_i^- < \infty, \quad \beta_1^+ + \beta_1^- \leq 1$$

Furthermore, these functions have the form

$$\chi_{\alpha^\pm, \beta^\pm, \gamma^\pm}(x_1, x_2, \ldots) = \prod_{j=1}^{\infty} \Phi_{\alpha^\pm, \beta^\pm, \gamma^\pm}(x_j)$$

where $\Phi_{\alpha^\pm, \beta^\pm, \gamma^\pm} : \mathbb{T} \to \mathbb{C}$ is the continuous function

$$\Phi_{\alpha^\pm, \beta^\pm, \gamma^\pm}(x) := e^{\gamma^+(x-1)+\gamma^-(x^{-1}-1)} \prod_{i=1}^{\infty} \left(\frac{1 + \beta_i^+(x-1)}{1 - \alpha_i^+(x-1)} , \frac{1 + \beta_i^-(x^{-1}-1)}{1 - \alpha_i^-(x^{-1}-1)} \right).$$

1.6. **Goal.** In this presentation, we will outline two very special examples of this parameterization, namely when

(a) $\beta^+ = (\beta, 0, 0, \ldots), \beta^- = \alpha^\pm = (0, 0, \ldots), \gamma^\pm = 0$ for $\beta \in [0, 1]$ so that

$$\Phi_{\alpha^\pm, \beta^\pm, \gamma^\pm}(x) = 1 + \beta(x-1) \implies \chi_{\alpha^\pm, \beta^\pm, \gamma^\pm}(x_1, x_2, \ldots) = \prod_{j=1}^{\infty} (1 + \beta(x_j - 1))$$

(b) $\alpha^+ = (\alpha, 0, 0, \ldots), \beta^\pm = \alpha^\pm = (0, 0, \ldots), \gamma^\pm = 0$ for $\alpha \in [0, 1]$ so that

$$\Phi_{\alpha^\pm, \beta^\pm, \gamma^\pm}(x) = \frac{1}{1 - \alpha(x-1)} \implies \chi_{\alpha^\pm, \beta^\pm, \gamma^\pm}(x_1, x_2, \ldots) = \prod_{j=1}^{\infty} \frac{1}{1 - \alpha(x_j - 1)}$$

2. **Symmetric Functions**

In the last lecture, we introduced the following.

2.1. **Definition.** Given a sequence of integers $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_N$, the **Schur polynomial** is given by

$$s_\lambda(x_1, \ldots, x_N) = \frac{\det(x_j^{\lambda_i+N-i})_{i,j=1}^{N}}{\det(x_j^{-i})_{i,j=1}^{N}}$$

Also, if λ has $\lambda_N \geq 0$, we can use “Littlewood’s Combinatorial Description” of Schur functions

2.2. **Proposition.** Given a sequence of integers $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_N \geq 0,$

$$s_\lambda(x_1, \ldots, x_N) = \sum_{T \in \text{SSYT}(\lambda)} x^{\text{wt}(T)}$$
where $x^{\text{wt}(T)} = \prod_{j=1}^{\sum \lambda_i} x_j^\#$ of j’s in T.

2.3. Example.

\[s_{(2,1)}(x_1, x_2) = x_1^2 x_2 + x_1 x_2^2 \]

\[
\begin{array}{c}
1 \\
2
\end{array}
+ \begin{array}{c}
1 \\
2
\end{array}
\]

We also proved that

2.4. **Theorem.** The irreducible representations of $U(N)$ are in one-to-one correspondence with $\{ \lambda \in \mathbb{Z}^N \mid \lambda_1 \geq \cdots \geq \lambda_N \}$ where the character of representation T_λ of $U(N)$ corresponding to λ has character given by

\[
\text{Tr} \left(T_\lambda \left(\begin{array}{c}
x_1 \\
m_{2} \\
\vdots \\
x_N
\end{array} \right) \right) = s_\lambda(x_1, \ldots x_N)
\]

We will work with two special cases of the Schur polynomials.

2.5. **Definition.** Let $e_m(x_1, \ldots, x_N) := s_{(1^m)}(x_1, \ldots, x_N)$ be the elementary symmetric polynomials.

2.6. **Example.** Using the semistandard Young tableaux formula for Schur functions (Littlewood’s combinatorial description), we compute

(a)

\[e_2(x_1, x_2) = x_1 x_2 \]

\[
\begin{array}{c}
1 \\
2
\end{array}
\]

(b)

\[e_2(x_1, x_2, x_3) = x_1 x_2 + x_1 x_3 + x_2 x_3 \]

\[
\begin{array}{c}
1 \\
2 \\
3
\end{array}
+ \begin{array}{c}
1 \\
3
\end{array}
+ \begin{array}{c}
2 \\
3
\end{array}
\]

(c)

\[e_3(x_1, x_2, x_3) = x_1 x_2 x_3 \]

\[
\begin{array}{c}
1 \\
2 \\
3
\end{array}
\]

2.7. **Remark.** $e_N(x_1, \ldots, x_N)$ encodes character of the “determinant representation” of $U(N)$, that is

\[T(U)v = (\det U)v = x_1 x_2 \cdots x_N v \]
since the determinant is just the product of the eigenvalues. More generally,
\[e_m(x_1, \ldots, x_N) \]
codes the representation induced by the \(U(N) \)-action on
\(\bigwedge^m \mathbb{C}^N \):
\[
U \cdot (v_1 \wedge \cdots \wedge v_m) = (Uv_1 \wedge \cdots \wedge Uv_m)
\]

Importantly, we also compute, generalizing our example above

2.8. **Proposition.** For \(0 < m \leq n \),
\[
e_m(x_1, x_2, \ldots, x_n) = \sum_{T \in \text{SSYT}((1^m)) \text{ filled with elements of } \{1, \ldots, n\}} x^{\text{wt}(T)} = \sum_{I \subseteq \{1, \ldots, n\}, |I| = m} x^I
\]
where \(x^I := \prod_{i \in I} x_i \) and consequently,
\[
e_m(1, \ldots, 1) = \binom{n}{m}
\]

Proof. To see this, we simply observe that a single column semistandard tableau with \(m \) rows filled with letters \(\{1, \ldots, n\} \) is a choice of \(m \) distinct elements of \(\{1, \ldots, n\} \) since columns must be strictly increasing. \(\square \)

2.9. **Definition.** Let \(h_m(x_1, \ldots, x_N) := s_m(x_1, \ldots, x_N) \) be the complete homogeneous symmetric polynomials.

2.10. **Example.** Using again our tableaux formula for Schur functions, we compute

(a)
\[
h_2(x_1, x_2) = x_1^2 + x_1x_2 + x_2^2
\]
\[
\begin{array}{c}
1
\end{array} + \begin{array}{c}
1
\quad \begin{array}{c}
2
\end{array}
\end{array} + \begin{array}{c}
2
\quad \begin{array}{c}
2
\end{array}
\end{array}
\]

(b)
\[
h_2(x_1, x_2, x_3) = x_1^2 + x_1x_2 + x_1x_3 + x_2^2 + x_2x_3 + x_3^2
\]
\[
\begin{array}{c}
1
\quad \begin{array}{c}
1
\quad \begin{array}{c}
2
\quad \begin{array}{c}
3
\end{array}
\end{array}
\end{array}
\end{array} + \begin{array}{c}
1
\quad \begin{array}{c}
3
\end{array}
\end{array} + \begin{array}{c}
2
\quad \begin{array}{c}
3
\end{array}
\end{array} + \begin{array}{c}
3
\quad \begin{array}{c}
3
\end{array}
\end{array}
\]

2.11. **Proposition.** For \(0 < m \leq n \),
\[
h_m(x_1, x_2, \ldots, x_n) = \sum_{T \in \text{SSYT}((m)) \text{ filled with elements of } \{1, \ldots, n\}} x^{\text{wt}(T)} = \sum_{I \text{ multiset of } \{1, \ldots, n\}, |I| = m} x^I
\]
where \(x^I := \prod_{i \in I} x_i \) and consequently,
\[
h_m(1, \ldots, 1)
\]
\[
= \text{Number of ways to choose a multiset of size } m \text{ from } n \text{ things}
\]
\[
= \binom{n + m - 1}{m} = \binom{n + m - 1}{n - 1}
\]
2.12. **Remark.** The combinatorics of the identity above follow by considering a “stars and bars” approach, namely, both expressions are in bijection with the number of ways to place \(n - 1 \) bars among \(m \) stars, allowing bars to be consecutive with each other.

\[
\{1, 1, 1, 2, 4, 5\} \rightarrow \ast \ast \ast | \ast | \ast |
\]

2.13. **Definition.** Let

\[
\binom{n}{m} := \binom{n + m - 1}{m}
\]

be the number of ways to choose a multiset of size \(m \) from \(n \) things.

3. **Two Examples of \(U(\infty) \) characters**

Now, we wish to take a sequence of \(U(N) \) characters to get a character of \(U(\infty) \).

3.1. **Definition.** We say that a sequence of central functions \(f_N \) (i.e. \(f_N \) only depends on the eigenvalues of the input) on \(U(N) \) converge to a central function \(f \) on \(U(\infty) \) if, for every fixed \(K \), we have

\[
f_N(x_1, \ldots, x_K, 1, 1, \ldots, 1) \to f(x_1, \ldots, x_K, 1, 1, \ldots)
\]

uniformly on the \(K \)-torus \(T^K \) of diagonal matrices.

3.2. **Proposition.** Let \(L : \mathbb{N} \to \mathbb{N} \) be a sequence such that \(L(N)/N \to \beta \in [0, 1] \) as \(N \to \infty \). Then,

\[
\frac{e_{L(N)}(x_1, \ldots, x_N)}{e_{L(N)}(1, \ldots, 1)} \to \prod_{i=1}^{\infty} (1 + \beta(x_i - 1)), \quad (x_1, x_2, \ldots) \in T^\infty_{fin}
\]

Proof. Fix \(K \leq N \). Then,

\[
e_{L(N)}(x_1, \ldots, x_K, 1, \ldots, 1)
= \sum_{T \in SSYT((1^{L(N)})) \text{ labelled with } \{1, \ldots, N\}} x^{\text{wt}(T) \leq K}
= \sum_{\text{binary } K \text{ sequences } \epsilon} \# \{N \text{ sequences with sum } L(N) \text{ that start with } (\epsilon_1, \ldots, \epsilon_K)\} \epsilon^{(\epsilon_1, \ldots, \epsilon_K)}
= \sum_{\text{binary } K \text{ sequences } \epsilon} \binom{N - K}{L(N) - \sum_{i=1}^K \epsilon_i} x^{\epsilon_1} \cdots x^{\epsilon_K}
\]

where the last equality comes from considering how to fill tableaux of the form

5
3.4. Proposition. \(\text{This approach.} \) derive the proposition directly from this observation. See [Pet12] §4.1.10 for

\[
\frac{e_{L(N)}(x_1, \ldots, x_K, 1, \ldots, 1)}{e_{L(N)}(1, \ldots, 1)} = \sum_{\text{binary } K \text{ sequences } \epsilon} \left(\frac{N - K}{L(N) - \sum_{i=1}^{K} \epsilon_i} \right)^{x_1^\epsilon_1 \cdots x_K^\epsilon_K}
\]

where

\[
\left(\frac{N - K}{L(N) - \sum_{i=1}^{K} \epsilon_i} \right)^{x_1^\epsilon_1 \cdots x_K^\epsilon_K} = \frac{(N - K)!}{N!} \times \frac{(L(N))!}{(L(N) - \sum_{i=1}^{K} \epsilon_i)!} \times \frac{(N - L(N))!}{(N - L(N) - (K - \sum_{i=1}^{K} \epsilon_i))!}
\]

Thus, taking the limit as \(N \to \infty \) on our ratio, we get

\[
\sum_{\text{binary } K \text{ sequences } \epsilon} x_1^\epsilon_1 \cdots x_K^\epsilon_K \beta^{\sum_{i=1}^{K} \epsilon_i} (1 - \beta)^{K - \sum_{i=1}^{K} \epsilon_i} = \prod_{i=1}^{K} ((1 - \beta) + \beta x_i)
\]

and so, taking \(K \to \infty \) completes the proof. \(\square \)

3.3. Remark. An astute reader may notice that \((1 - \beta)^{K - \sum_{i=1}^{K} \epsilon_i} \beta^{\sum_{i=1}^{K} \epsilon_i}\) represents the probability of \(\sum_{i=1}^{K} \epsilon_i\) successes in \(K \) trials where each attempt has probability of success \(\beta \). One can use “de Finetti’s theorem” in order to derive the proposition directly from this observation. See [Pet12] §4.1.10 for this approach.

3.4. Proposition. Let \(L: \mathbb{N} \to \mathbb{N} \) be a sequence such that \(L(N)/N \to \alpha \in [0, 1] \) as \(N \to \infty \). Then,

\[
h_{L(N)}(x_1, \ldots, x_N) \to \prod_{i=1}^{\infty} \frac{1}{1 - \alpha(x_i - 1)}, \quad (x_1, x_2, \ldots) \in \mathbb{T}_{\text{fin}}^\infty
\]

Proof. We proceed much as in the proposition above. For a fixed \(K \leq N \), we have

\[
h_{L(N)}(x_1, \ldots, x_K, 1, \ldots, 1) \]

\[
= \sum_{\epsilon \in \mathbb{N}_0^K} \#\{N \text{ sequences with sum } L(N) \text{ starting with } (\epsilon_1, \ldots, \epsilon_K)\} x_1^\epsilon_1 \cdots x_K^\epsilon_K
\]

\[
= \sum_{\epsilon \in \mathbb{N}_0^K} \left(\frac{N - K}{L(N) - \sum_{i=1}^{K} \epsilon_i} \right)^{x_1^\epsilon_1 \cdots x_K^\epsilon_K}
\]

where the last line comes from thinking about

Fill \(\sum_{i=1}^{K} \epsilon_i \) boxes with \(\{1, \ldots, K\} \)

Fill \(N - \sum_{i=1}^{K} \epsilon_i \) boxes with \(\{K+1, \ldots, N\} \)
and so
\[
\frac{h_{L(N)}(x_1, \ldots, x_K, 1, \ldots, 1)}{h_{L(N)}(1, \ldots, 1)} = \sum_{\epsilon \in \mathbb{N}_0^K} \left[\left(\frac{N - K}{L(N) - \sum_{i=1}^K \epsilon_i} \right) / \left(\frac{N}{L(N)} \right) \right] x_1^{\epsilon_1} \ldots x_K^{\epsilon_K}
\]
Consider that, for fixed \(K \leq N \), we have
\[
\left(\frac{N - K}{L(N) - \sum_{i=1}^K \epsilon_i} \right) / \left(\frac{N}{L(N)} \right) = \frac{(N + L(N) - K - \sum \epsilon_i - 1)!}{(N + L(N) - 1)!} \times \frac{(L(N))!}{(L(N) - \sum \epsilon_i)!} \times \frac{(N - 1)!}{(N - K - 1)!}
\]
\[
\approx \frac{(L(N))^{\sum \epsilon_i} N^K}{(N + L(N))^{K + \sum \epsilon_i}}
\]
\[
= \left(\frac{L(N)}{N} \right)^{\sum \epsilon_i} \left(\frac{1}{1 + \frac{L(N)}{N}} \right)^{K + \sum \epsilon_i}
\]
\[
N \to \infty \quad \left(\frac{\alpha}{1 + \alpha} \right)^{\sum \epsilon_i} \left(\frac{1}{1 + \alpha} \right)^K
\]
Thus,
\[
\lim_{N \to \infty} \frac{h_{L(N)}(x_1, \ldots, x_K, 1, \ldots, 1)}{h_{L(N)}(1, \ldots, 1)} = \sum_{\epsilon} \left(\frac{1}{1 + \alpha} \right)^K \left(\frac{\alpha}{1 + \alpha} \right)^{\sum \epsilon_i} x_1^{\epsilon_1} \ldots x_K^{\epsilon_K}
\]
\[
= \prod_{i=1}^K \left(\frac{1}{1 + \alpha} \right) \left(1 + \frac{\alpha}{1 + \alpha} x_i + \left(\frac{\alpha}{1 + \alpha} \right)^2 x_i^2 + \cdots \right)
\]
\[
= \prod_{i=1}^K \frac{1}{1 + \alpha - \alpha x_i}
\]
So, taking \(K \to \infty \) completes the proof. \(\square \)

References