1. INTRODUCTION

First, we recall some definitions.

1.1. **Definition.** An $N \times N$ matrix U is *unitary* if $UU^* = I_N$ where U^* is the conjugate transpose of U. Then, $U(N)$ is the compact Lie group of all $N \times N$ unitary matrices. Since $U(N-1) \hookrightarrow U(N)$ via a canonical embedding, we also define

$$U(\infty) := \bigcup_{N=1}^{\infty} U(N)$$

that is, $U(\infty)$ are all infinite $\mathbb{N} \times \mathbb{N}$ unitary matrices that differ from the identity matrix only in a fixed number of positions.

1.2. **Definition.** A *normalized character* of $U(N)$ is a function $\chi : U(N) \to \mathbb{C}$ such that

(a) $\chi(e) = 1$ (normalized),
(b) $\chi(ab) = \chi(ba)$ (constant on conjugacy classes),
(c) $(\sum c_i \chi(a_i))(\sum c_j \chi(a_j)) = \sum c_i c_j \chi(a_i a_i^{-1}) \geq 0$ (nonnegative definite),
(d) χ is continuous.

Normalized characters form a convex set since $t\chi_1 + (1-t)\chi_2$ meets all the axioms of a normalized character for all $t \in [0,1]$. Then, we can discuss the following notion.

1.3. **Definition.** An *extreme character* $\chi : U(N) \to \mathbb{C}$ is a normalized character such that $\chi \neq t\chi_1 + (1-t)\chi_2$ for any $t \in (0,1)$ for normalized characters $\chi_1, \chi_2 \neq \chi$.

1.4. **Definition.** The *N-dimensional torus* is

$$\mathbb{T}^N := \{(x_1, \ldots, x_N) \in \mathbb{C}^N \mid |x_i| = 1\}$$

and lies in $U(N)$ as diagonal matrices. The *finitary torus* is $\mathbb{T}_{fin}^\infty := \bigcup_{N=1}^{\infty} \mathbb{T}^N$.

Recall one of our main goals is to understand the following theorem.

Date: February 1, 2019.
1.5. **Theorem** (Edrei-Voiculescu). Extreme characters of $U(\infty)$ are functions $\chi: T_f^\infty \to \mathbb{C}$ depending on countably many parameters

$$\begin{cases}
\alpha^\pm = (\alpha_1^\pm \geq \alpha_2^\pm \geq \cdots \geq 0);
\beta^\pm = (\beta_1^\pm \geq \beta_2^\pm \geq \cdots \geq 0);
\gamma^\pm \geq 0
\end{cases}$$

such that

$$\sum_i \alpha_i^+ + \sum_i \alpha_i^- + \sum_i \beta_i^+ + \sum_i \beta_i^- < \infty, \quad \beta_1^+ + \beta_1^- \leq 1$$

Furthermore, these functions have the form

$$\chi_{\alpha^\pm, \beta^\pm, \gamma^\pm}(x_1, x_2, \ldots) = \prod_{j=1}^{\infty} \Phi_{\alpha^\pm, \beta^\pm, \gamma^\pm}(x_j)$$

where $\Phi_{\alpha^\pm, \beta^\pm, \gamma^\pm}: \mathbb{T} \to \mathbb{C}$ is the continuous function

$$\Phi_{\alpha^\pm, \beta^\pm, \gamma^\pm}(x) := e^{\gamma^+(x-1)+\gamma^-(x^{-1}-1)} \prod_{i=1}^\infty \left(\frac{1 + \beta_i^+(x-1)}{1 - \alpha_i^+(x-1)} \cdot \frac{1 + \beta_i^-(x^{-1}-1)}{1 - \alpha_i^-(x^{-1}-1)} \right).$$

1.6. **Goal.** In this presentation, we will outline two very special examples of this parameterization, namely when

(a) $\beta^+ = (\beta, 0, 0, \ldots), \beta^- = \alpha^+ = (0, 0, \ldots), \gamma^+ = 0$ for $\beta \in [0, 1]$, so that

$$\Phi_{\alpha^\pm, \beta^\pm, \gamma^\pm}(x) = 1 + \beta(x-1) \implies \chi_{\alpha^\pm, \beta^\pm, \gamma^\pm}(x_1, x_2, \ldots) = \prod_{j=1}^{\infty} (1 + \beta(x_j - 1))$$

(b) $\alpha^+ = (\alpha, 0, 0, \ldots), \beta^\pm = \alpha^+ = (0, 0, \ldots), \gamma^\pm = 0$ for $\alpha \in [0, 1]$, so that

$$\Phi_{\alpha^\pm, \beta^\pm, \gamma^\pm}(x) = \frac{1}{1 - \alpha(x-1)} \implies \chi_{\alpha^\pm, \beta^\pm, \gamma^\pm}(x_1, x_2, \ldots) = \prod_{j=1}^{\infty} \frac{1}{1 - \alpha(x_j - 1)}$$

2. **Symmetric Functions**

In the last lecture, we introduced the following.

2.1. **Definition.** Given a sequence of integers $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_N$, the Schur polynomial is given by

$$s_{\lambda}(x_1, \ldots, x_N) = \det(x_j^{\lambda_i+N-i})_{i,j=1}^N / \det(x_j^{N-i})_{i,j=1}^N$$

Also, if λ has $\lambda_N \geq 0$, we can use “Littlewood’s Combinatorial Description” of Schur functions

2.2. **Proposition.** Given a sequence of integers $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_N \geq 0$,

$$s_{\lambda}(x_1, \ldots, x_N) = \sum_{T \in \text{SYT}(\lambda)} x^{\text{wt}(T)}$$
where \(x^{\text{wt}(T)} = \prod_{j=1}^{\sum \lambda_i} x_j^{\# \text{ of } j's \text{ in } T} \).

2.3. Example.

\[
s_{(2,1)}(x_1, x_2) = x_1^2 x_2 + x_1 x_2^2
\]

\[
\begin{array}{c}
1 & 1 \\
2 & 2
\end{array}
+ \begin{array}{c}
1 & 2 \\
2 & 2
\end{array}
\]

We also proved that

2.4. Theorem. The irreducible representations of \(U(N) \) are in one-to-one correspondence with \(\{ \lambda \in \mathbb{Z}^N \mid \lambda_1 \geq \cdots \geq \lambda_N \} \) where the character of representation \(T_\lambda \) of \(U(N) \) corresponding to \(\lambda \) has character given by

\[
\text{Tr} \left(T_\lambda \begin{pmatrix} x_1 & \cdots & x_N \\ x_1 & \cdots & x_N \\
\end{pmatrix} \right) = s_\lambda(x_1, \ldots, x_N)
\]

We will work with two special cases of the Schur polynomials.

2.5. Definition. Let \(e_m(x_1, \ldots, x_N) := s_{(1^m)}(x_1, \ldots, x_N) \) be the elementary symmetric polynomials.

2.6. Example. Using the semistandard Young tableaux formula for Schur functions (Littlewood’s combinatorial description), we compute

(a)

\[
e_2(x_1, x_2) = x_1 x_2
\]

\[
\begin{array}{c}
1 \\
2
\end{array}
\]

(b)

\[
e_2(x_1, x_2, x_3) = x_1 x_2 + x_1 x_3 + x_2 x_3
\]

\[
\begin{array}{c}
1 & + & 1 & + & 2 \\
2 & & 3 & & 3
\end{array}
\]

(c)

\[
e_3(x_1, x_2, x_3) = x_1 x_2 x_3
\]

\[
\begin{array}{c}
1 \\
2 \\
3
\end{array}
\]

2.7. Remark. \(e_N(x_1, \ldots, x_N) \) encodes character of the “determinant representation” of \(U(N) \), that is

\[
T(U)v = (\det U)v = x_1 x_2 \cdots x_N v
\]
since the determinant is just the product of the eigenvalues. More generally,
$e_m(x_1, x_2, \ldots, x_N)$ encodes the representation induced by the $U(N)$-action on
$\bigwedge^m \mathbb{C}^N$:

$$U \cdot (v_1 \wedge \cdots \wedge v_m) = (Uv_1 \wedge \cdots \wedge Uv_m)$$

Importantly, we also compute, generalizing our example above

2.8. Proposition. For $0 < m \leq n$,

$$e_m(x_1, x_2, \ldots, x_n) = \sum_{T \in \text{SSYT}((1^m)) \text{ filled with elements of } \{1, \ldots, n\}} x^{\text{wt}(T)} = \sum_{I \subseteq \{1, \ldots, n\}, |I| = m} x^I$$

where $x^I := \prod_{i \in I} x_i$ and consequently,

$$e_m(1, \ldots, 1) = \binom{n}{m}$$

Proof. To see this, we simply observe that a single column semistandard tableau with m rows filled with letters $\{1, \ldots, n\}$ is a choice of m distinct elements of $\{1, \ldots, n\}$ since columns must be strictly increasing. □

2.9. Definition. Let $h_m(x_1, \ldots, x_N) := s_m(x_1, \ldots, x_N)$ be the complete homogeneous symmetric polynomials.

2.10. Example. Using again our tableaux formula for Schur functions, we compute

(a)

$$h_2(x_1, x_2) = x_1^2 + x_1x_2 + x_2^2$$

$$\begin{array}{cccc}
1 & 1 \\
1 & 2 \\
2 & 2 \\
\end{array}$$

(b)

$$h_2(x_1, x_2, x_3) = x_1^2 + x_1x_2 + x_1x_3 + x_2^2 + x_2x_3 + x_3^2$$

$$\begin{array}{cccccc}
1 & 1 \\
1 & 2 \\
1 & 3 \\
2 & 2 \\
2 & 3 \\
3 & 3 \\
\end{array}$$

2.11. Proposition. For $0 < m \leq n$,

$$h_m(x_1, x_2, \ldots, x_n) = \sum_{T \in \text{SSYT}((m)) \text{ filled with elements of } \{1, \ldots, n\}} x^{\text{wt}(T)} = \sum_{I \text{ multiset of } \{1, \ldots, n\}, |I| = m} x^I$$

where $x^I := \prod_{i \in I} x_i$ and consequently,

$$h_m(1, \ldots, 1) = \text{Number of ways to choose a multiset of size } m \text{ from } n \text{ things}$$

$$= \binom{n + m - 1}{m} = \binom{n + m - 1}{n - 1}$$
2.12. Remark. The combinatorics of the identity above follow by considering a “stars and bars” approach, namely, both expressions are in bijection with the number of ways to place \(n - 1 \) bars among \(m \) stars, allowing bars to be consecutive with each other.

\[
\{1, 1, 1, 2, 4, 5\} \rightarrow **\|**|**
\]

2.13. Definition. Let

\[
\begin{pmatrix} n \\ m \end{pmatrix} := \binom{n + m - 1}{m}
\]

be the number of ways to choose a multiset of size \(m \) from \(n \) things.

3. Two Examples of \(U(\infty) \) characters

Now, we wish to take a sequence of \(U(N) \) characters to get a character of \(U(\infty) \).

3.1. Definition. We say that a sequence of central functions \(f_N \) (i.e. \(f_N \) only depends on the eigenvalues of the input) on \(U(N) \) converge to a central function \(f \) on \(U(\infty) \) if, for every fixed \(K \), we have

\[
f_N(x_1, \ldots, x_K, 1, 1, \ldots, 1) \to f(x_1, \ldots, x_K, 1, 1, \ldots)
\]

uniformly on the \(K \)-torus \(T^K \) of diagonal matrices.

3.2. Proposition. Let \(L: \mathbb{N} \to \mathbb{N} \) be a sequence such that \(L(N)/N \to \beta \in [0, 1] \) as \(N \to \infty \). Then,

\[
\frac{e_{L(N)}(x_1, \ldots, x_N)}{e_{L(N)}(1, \ldots, 1)} \to \prod_{i=1}^{\infty} (1 + \beta(x_i - 1)), \quad (x_1, x_2, \ldots) \in T_{fin}^\infty
\]

Proof. Fix \(K \leq N \). Then,

\[
e_{L(N)}(x_1, \ldots, x_K, 1, \ldots, 1)
= \sum_{T \in \text{SSYT}(L(N))} x^{\text{wt}(T) \leq K}
= \sum_{\text{binary } K \text{ sequences } \epsilon} \# \{N \text{ sequences with sum } L(N) \text{ that start with } (\epsilon_1, \ldots, \epsilon_K) \} x^{(\epsilon_1, \ldots, \epsilon_K)}
= \sum_{\text{binary } K \text{ sequences } \epsilon} \left(\frac{N - K}{L(N) - \sum_{i=1}^{K} \epsilon_i} \right) x^{\epsilon_1} \cdots x^{\epsilon_K}
\]

where the last equality comes from considering how to fill tableaux of the form
\[
\left\{ \begin{array}{l}
\text{Fill } \sum_{i=1}^{K} \epsilon_i \text{ boxes with } \{1, \ldots, K\} \\
\text{Fill } L(N) - \sum_{i=1}^{K} \epsilon_i \text{ boxes with } \{K+1, \ldots, N\}
\end{array} \right.
\]

\[
\frac{e_{L(N)}(x_1, \ldots, x_K, 1, \ldots, 1)}{e_{L(N)}(1, \ldots, 1)} = \sum_{\text{binary } K \text{ sequences } \epsilon} \left(\frac{N-K}{L(N) - \sum_{i=1}^{K} \epsilon_i} \right) x_{1}^{\epsilon_1} \cdots x_{K}^{\epsilon_K}
\]

where
\[
\left(\frac{N-K}{L(N) - \sum_{i=1}^{K} \epsilon_i} \right) \frac{N-K}{L(N)} = \frac{(N-K)!}{N!} \times \frac{(L(N))!}{(L(N) - \sum_{i=1}^{K} \epsilon_i)!} \times \frac{(N-L(N))!}{(N-L(N) - (K - \sum_{i=1}^{K} \epsilon_i))!}
\]

Thus, taking the limit as \(N \to \infty \) on our ratio, we get
\[
\sum_{\text{binary } K \text{ sequences } \epsilon} x_{1}^{\epsilon_1} \cdots x_{K}^{\epsilon_K} \beta^{\sum_{i=1}^{K} \epsilon_i} (1-\beta)^{K-\sum_{i=1}^{K} \epsilon_i} = \prod_{i=1}^{K} ((1-\beta) + \beta x_i)
\]

and so, taking \(K \to \infty \) completes the proof. \(\square \)

3.3. Remark. An astute reader may notice that \((1-\beta)^{K-\sum_{i=1}^{K} \epsilon_i} \beta^{\sum_{i=1}^{K} \epsilon_i}\) represents the probability of \(\sum_{i=1}^{K} \epsilon_i\) successes in \(K\) trials where each attempt has probability of success \(\beta\). One can use “de Finetti’s theorem” in order to derive the proposition directly from this observation. See [Pet12]§4.1.10 for this approach.

3.4. Proposition. Let \(L: \mathbb{N} \to \mathbb{N} \) be a sequence such that \(L(N)/N \to \alpha \in [0,1] \) as \(N \to \infty \). Then,
\[
\frac{h_{L(N)}(x_1, \ldots, x_N)}{h_{L(N)}(1, \ldots, 1)} \to \prod_{i=1}^{\infty} \frac{1}{1-\alpha(x_i-1)}, \quad (x_1, x_2, \ldots) \in \mathbb{T}_m^\infty
\]

Proof. We proceed much as in the proposition above. For a fixed \(K \leq N \), we have
\[
h_{L(N)}(x_1, \ldots, x_K, 1, \ldots, 1) = \sum_{\epsilon \in \mathcal{B}_0^K} \# \{ \text{N sequences with sum } L(N) \text{ starting with } (\epsilon_1, \ldots, \epsilon_K) \} x_{1}^{\epsilon_1} \cdots x_{K}^{\epsilon_K}
\]

\[
= \sum_{\epsilon \in \mathcal{B}_0^K} \left(\frac{N-K}{L(N) - \sum_{i=1}^{K} \epsilon_i} \right) x_{1}^{\epsilon_1} \cdots x_{K}^{\epsilon_K}
\]

where the last line comes from thinking about

\[
\begin{array}{ll}
\text{Fill } \sum_{i=1}^{K} \epsilon_i \text{ boxes with } \{1, \ldots, K\} & \text{Fill } N - \sum_{i=1}^{K} \epsilon_i \text{ boxes with } \{K+1, \ldots, N\}
\end{array}
\]
and so
\[
\frac{h_{L(N)}(x_1, \ldots, x_K, 1, \ldots, 1)}{h_{L(N)}(1, \ldots, 1)} = \sum_{\epsilon \in N^K} \left[\frac{N-K}{L(N) - \sum_{i=1}^K \epsilon_i} \right] / \left(\frac{N}{L(N)} \right) x_1^{\epsilon_1} \cdots x_K^{\epsilon_K}
\]

Consider that, for fixed \(K \leq N \), we have
\[
\frac{1}{L(N) - \sum_{i=1}^K \epsilon_i} = \frac{(N + L(N) - K - \sum_{i=1}^K \epsilon_i - 1)!}{(N + L(N) - 1)!} \times \frac{(L(N))!}{(L(N) - \sum_{i=1}^K \epsilon_i)!} \times \frac{(N - 1)!}{(N - K - 1)!}
\]

\[
\approx \frac{(L(N))^{\sum_{i=1}^K \epsilon_i} N^K}{(N + L(N))^{K + \sum_{i=1}^K \epsilon_i}}
\]

\[
= \left(\frac{L(N)}{N} \right)^{\sum_{i=1}^K \epsilon_i} \left(\frac{1}{1 + \frac{L(N)}{N}} \right)^{K + \sum_{i=1}^K \epsilon_i}
\]

\[
\lim_{N \to \infty} \left(\frac{\alpha}{1 + \alpha} \right)^{\sum_{i=1}^K \epsilon_i} \left(\frac{1}{1 + \alpha} \right)^K
\]

Thus,
\[
\lim_{N \to \infty} \frac{h_{L(N)}(x_1, \ldots, x_K, 1, \ldots, 1)}{h_{L(N)}(1, \ldots, 1)} = \sum_{\epsilon} \left(\frac{1}{1 + \alpha} \right)^K \left(\frac{\alpha}{1 + \alpha} \right)^{\sum_{i=1}^K \epsilon_i} x_1^{\epsilon_1} \cdots x_K^{\epsilon_K}
\]

\[
= \prod_{i=1}^K \left(\frac{1}{1 + \alpha} \right) \left(1 + \frac{\alpha}{1 + \alpha} x_i + \left(\frac{\alpha}{1 + \alpha} \right)^2 x_i^2 + \cdots \right)
\]

\[
= \prod_{i=1}^K \frac{1}{1 + \alpha - \alpha x_i}
\]

So, taking \(K \to \infty \) completes the proof. \(\square \)

References