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Symmetric Polynomials

Polynomials f ∈ Q(q, t)[x1, . . . , xn] satisfying σ.f = f for all σ ∈ Sn.

Generators

er =
∑

i1<i2<···<ir

xi1xi2 · · · xir or hr =
∑

i1≤i2≤···≤ir

xi1xi2 · · · xir

E.g. for n = 3,

e1 = x1 + x2 + x3 =h1

e2 = x1x2 + x1x3 + x2x3 h2 = x21 + x1x2 + x1x3 + x22 + x2x3 + x23

e3 = x1x2x3 h3 = x31 + x21x2 + x21x3 + x1x
2
2 + · · ·

Let Λ = Q(q, t)[e1, e2, . . .] = Q(q, t)[h1, h2, . . .]. Call these
“symmetric functions.”

Λ is a Q(q, t)-algebra.
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Bases for symmetric functions

Dimension of degree d symmetric functions?

Number of partitions of d .

Definition

n ∈ Z>0, a partition of n is λ = (λ1 ≥ λ2 ≥ · · · ≥ λℓ > 0) such that
λ1 + λ2 + · · ·+ λℓ = n.

5 → 2 + 2 + 1 →

4 + 1 → 2 + 1 + 1 + 1 →

3 + 2 → 1 + 1 + 1 + 1 + 1 →

3 + 1 + 1 →

=⇒ any basis of symmetric functions is indexed by partitions.
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Young Tableaux

Definition

Filling of partition diagram of λ with numbers such that

1 strictly increasing up columns

2 weakly increasing along rows

Collection is called SSYT(λ).

≤ ≤ ≤
∨∨∨

≤ ≤
∨
∨

For λ = (2, 1),

2
1 1 ,

3
1 1 ,

3
2 2 ,

2
1 2 ,

3
1 3 ,

3
2 3 ,

2
1 3 ,

3
1 2
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Polynomials from tableaux

Associate a polynomial to SSYT(λ).

2
1 1 ,

3
1 1 ,

3
2 2 ,

2
1 2 ,

3
1 3 ,

3
2 3 ,

2
1 3 ,

3
1 2

→
x2
x1 x1 ,

x3
x1 x1 ,

x3
x2 x2 ,

x2
x1 x2 ,

x3
x1 x3 ,

x3
x2 x3 ,

x2
x1 x3 ,

x3
x1 x2

s(2,1)(x1, x2, x3) = x21x2 + x21x3 + x22x3 + x1x
2
2 + x1x

2
3 + x2x

2
3 + 2x1x2x3

Definition

For λ a partition

sλ =
∑

T∈SSYT(λ)

xT for xT =
∏
i∈T

xi

sλ is a symmetric function.

{sλ}λ forms a basis for ΛQ.
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Representation theory and Schur functions

Irreducible representations of Sn are also labeled by partitions of n.

Frobenius charactersitc, Frob: Rep(Sn) → Λ, such that

Irreducible Sn-representation Vλ has Frob(Vλ) = sλ

U ∼= V ⊕W =⇒ Frob(U) = Frob(V ) + Frob(W )

IndSm+n

Sm×Sn
(V ×W ) 7→ Frob(V ) · Frob(W )

Upshot: Sn-representations go to symmetric functions in structure
preserving way.

Hidden Guide: Schur Positivity

“Naturally occurring” symmetric functions which are non-negative
(coefficients in N) linear combinations in Schur polynomial basis are
interesting since they could have representation-theoretic models.
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An Explicit Example: Harmonic polynomials

Harmonic polynomials

M = polynomials killed by all symmetric differential operators.

Explicitly, for

∆ = det

∣∣∣∣∣∣
x21 x1 1
x22 x2 1
x23 x3 1

∣∣∣∣∣∣ = x21 (x2 − x3)− x22 (x1 − x3) + x23 (x1 − x2)

M is the vector space given by

M =sp
{(

∂a
x1∂

b
x2∂

c
x3

)
∆ | a, b, c ≥ 0

}
=sp{∆, 2x1(x2 − x3)− x22 + x23 , 2x2(x3 − x1)− x23 + x21 ,

x3 − x1, x2 − x3, 1}
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Harmonic polynomials

sp{∆, 2x1(x2 − x3)− x22 + x23 , 2x2(x3 − x1)− x23 + x21 , x3 − x1, x2 − x3, 1}

1 Break M up into irreducible Sn-representations.

sp{∆}︸ ︷︷ ︸⊕ sp{2x1(x2−x3)−x22+x23 , 2x2(x3−x1)−x23+x21}︸ ︷︷ ︸⊕ sp{x3−x1, x2−x3}︸ ︷︷ ︸⊕ sp{1}︸ ︷︷ ︸

2 How many times does an irreducible Sn-representation occur?
Frobenius:

e31 = (x1 + x2 + x3)
3 = s + s + s + s

Remark: M is a “regular representation.”
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Getting more information

Break M up into smallest Sn fixed subspaces

sp{∆}︸ ︷︷ ︸⊕ sp{2x1(x2−x3)−x22+x23 , 2x2(x3−x1)−x23+x21}︸ ︷︷ ︸
deg=2

⊕ sp{x3−x1, x2−x3}︸ ︷︷ ︸
deg=1

⊕ sp{1}︸ ︷︷ ︸

Solution: irreducible Sn-representation of polynomials of degree d 7→ qdsλ
(graded Frobenius)

?? = q3s + q2s + q1s + q0s

Answer: Hall-Littlewood polynomial H (X ; q).
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A Problem

In 1988, Macdonald introduces one basis of symmetric polynomials to
rule them all!

Coefficients in Q(q, t), specializations give Hall-Littlewood
polynomials, Schur polynomials, and many other famous bases.

Defined by orthogonality and triangularity under a certain
inner-product.

Garsia modifies these polynomials so

H̃λ(X ; q, t) =
∑
µ

K̃ (q, t)sµ conjecturally satisfies K̃ (q, t) ∈ N[q, t]

H̃λ(X ; 1, 1) = e
|λ|
1 .

Does there exist a family of Sn-regular representations whose bigraded
Frobenius characteristics equal H̃λ(X ; q, t)?
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Garsia-Haiman modules

Q[x1, . . . , xn, y1, . . . , yn] with σ(xi ) = xσ(i), σ(yj) = yσ(j).

Garsia-Haiman (1993): Mµ = span of partial derivatives of

∆µ = det(i ,j)∈µ,k∈[n](x
i−1
k y j−1

k )

∆ = det

∣∣∣∣∣∣
1 y1 x1
1 y2 x2
1 y3 x3

∣∣∣∣∣∣ = x3y2 − y3x2 − y1x3 + y1x2 + y3x1 − y2x1

M2,1 = sp{∆2,1}︸ ︷︷ ︸
deg=(1,1)

⊕ sp{y3 − y1, y1 − y2}︸ ︷︷ ︸
deg=(0,1)

⊕ sp{x3 − x1, x1 − x2}︸ ︷︷ ︸
deg=(1,0)

⊕ sp{1}︸ ︷︷ ︸
deg=(0,0)

Irreducible Sn-representation Vλ with bidegree (a, b) 7→ qatbsλ

H̃ = q1t1s + t1s + q1s + s
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Garsia-Haiman modules

Theorem (Haiman, 2001)

The Garsia-Haiman module Mλ has bigraded Frobenius characteristic
given by H̃λ(X ; q, t)

Proved via connection to the Hilbert Scheme Hilbn(C2).

Corollary

H̃λ(X ; q, t) =
∑

µ K̃λµ(q, t)sµ satisfies K̃λµ(q, t) ∈ N[q, t].

No combinatorial description of K̃λµ(q, t).
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Symmetric functions, representation theory, and
combinatorics

Symmetric function Representation theory Combinatorics

sλ(X ) Irreducible Vλ SSYT(λ)

H̃λ(X ; q, t) Garsia-Haiman Mλ ??



Garsia-Haiman modules

Observation

All of these Garsia-Haiman modules are contained in the module of
diagonal harmonics:

DHn = sp{f ∈ C[x1, . . . , xn, y1, . . . , yn] |

 n∑
j=1

∂r
xj
∂s
yj

 f = 0,∀r + s > 0}

Question

What symmetric function is the bigraded Frobenius characteristic of DHn?
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∇en

Frobenius characteristic of DH3

=
t3H̃1,1,1

−qt2+t3+q2−qt
− (q2t+qt2+qt)H̃2,1

−q2t2+q3+t3−qt
− q3H̃3

−q3+q2t+qt−t2

Compare to

e3 =
H̃1,1,1

−qt2+t3+q2−qt
− (q+t+1)H̃2,1

−q2t2+q3+t3−qt
− H̃3

−q3+q2t+qt−t2

Operator ∇

∇H̃λ(X ; q, t) = qn(λ)tn(λ
∗)H̃λ(X ; q, t) ,

where n(λ) =
∑

i (i − 1)λi and λ∗ is the transpose partition to λ.

Theorem (Haiman, 2002)

The bigraded Frobenius characteristic of DHn is given by ∇en.
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Symmetric functions, representation theory, and
combinatorics

Symmetric function Representation theory Combinatorics

sλ(X ) Irreducible Vλ SSYT(λ)
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∇en DHn Shuffle theorem



Outline

1 Background on symmetric functions and Macdonald polynomials

2 Shuffle theorems, combinatorics, and LLT polynomials

3 A new formula for Macdonald polynomials



Key Object: LLT Polynomials

Let ν = (ν(1), . . . , ν(k)) be a tuple of skew shapes. (Skew shape = λ \ µ)

The content of a box in row y , column x is x − y .

Reading order: label boxes b1, . . . , bn by scanning each diagonal from
southwest to northeast, in order of increasing content.

A pair (a, b) ∈ ν is attacking if a precedes b in reading order and

content(b) = content(a), or
content(b) = content(a) + 1 and a ∈ ν(i), b ∈ ν(j) with i > j .

ν =

(
,

)

Attacking pairs: (b2, b3), (b3, b4), (b4, b5), (b4, b6), (b5, b7), (b6, b7), (b7, b8)
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LLT Polynomials

A semistandard tableau on ν is a map T : ν → Z+ which restricts to a
semistandard tableau on each ν(i).

An attacking inversion in T is an attacking pair (a, b) such
that T (a) > T (b).

The LLT polynomial indexed by a tuple of skew shapes ν is

Gν(x ; q) =
∑

T∈SSYT(ν)

qinv(T )

xT ,

where inv(T ) is the number of attacking inversions in T and

xT =
∏

a∈ν xT (a).

T =

2 4

3 5

5 6

1 1

inv(T ) = 4,

xT = x21 x2x3x4x
2
5 x6



LLT Polynomials

A semistandard tableau on ν is a map T : ν → Z+ which restricts to a
semistandard tableau on each ν(i).

An attacking inversion in T is an attacking pair (a, b) such
that T (a) > T (b).

The LLT polynomial indexed by a tuple of skew shapes ν is

Gν(x ; q) =
∑

T∈SSYT(ν)

qinv(T )xT ,

where inv(T ) is the number of attacking inversions in T and xT =
∏

a∈ν xT (a).

T =

2 4

3 5

5 6

1 1

inv(T ) = 4,

xT = x21 x2x3x4x
2
5 x6



LLT Polynomials

A semistandard tableau on ν is a map T : ν → Z+ which restricts to a
semistandard tableau on each ν(i).

An attacking inversion in T is an attacking pair (a, b) such
that T (a) > T (b).

The LLT polynomial indexed by a tuple of skew shapes ν is

Gν(x ; q) =
∑

T∈SSYT(ν)

qinv(T )xT ,

where inv(T ) is the number of attacking inversions in T and xT =
∏

a∈ν xT (a).

T =
non-inversion

2 4

3 5

5 6

1 1

inv(T ) = 4,

xT = x21 x2x3x4x
2
5 x6



LLT Polynomials

A semistandard tableau on ν is a map T : ν → Z+ which restricts to a
semistandard tableau on each ν(i).

An attacking inversion in T is an attacking pair (a, b) such
that T (a) > T (b).

The LLT polynomial indexed by a tuple of skew shapes ν is

Gν(x ; q) =
∑

T∈SSYT(ν)

qinv(T )xT ,

where inv(T ) is the number of attacking inversions in T and xT =
∏

a∈ν xT (a).

T =
inversion

2 4

3 5

5 6

1 1

inv(T ) = 4,

xT = x21 x2x3x4x
2
5 x6



LLT Polynomials

A semistandard tableau on ν is a map T : ν → Z+ which restricts to a
semistandard tableau on each ν(i).

An attacking inversion in T is an attacking pair (a, b) such
that T (a) > T (b).

The LLT polynomial indexed by a tuple of skew shapes ν is

Gν(x ; q) =
∑

T∈SSYT(ν)

qinv(T )xT ,

where inv(T ) is the number of attacking inversions in T and xT =
∏

a∈ν xT (a).

T =
inversion

2 4

3 5

5 6

1 1

inv(T ) = 4,

xT = x21 x2x3x4x
2
5 x6



LLT Polynomials

A semistandard tableau on ν is a map T : ν → Z+ which restricts to a
semistandard tableau on each ν(i).

An attacking inversion in T is an attacking pair (a, b) such
that T (a) > T (b).

The LLT polynomial indexed by a tuple of skew shapes ν is

Gν(x ; q) =
∑

T∈SSYT(ν)

qinv(T )xT ,

where inv(T ) is the number of attacking inversions in T and xT =
∏

a∈ν xT (a).

T =
non-inversion

2 4

3 5

5 6

1 1

inv(T ) = 4,

xT = x21 x2x3x4x
2
5 x6



LLT Polynomials

A semistandard tableau on ν is a map T : ν → Z+ which restricts to a
semistandard tableau on each ν(i).

An attacking inversion in T is an attacking pair (a, b) such
that T (a) > T (b).

The LLT polynomial indexed by a tuple of skew shapes ν is

Gν(x ; q) =
∑

T∈SSYT(ν)

qinv(T )xT ,

where inv(T ) is the number of attacking inversions in T and xT =
∏

a∈ν xT (a).

T =
non-inversion

2 4

3 5

5 6

1 1

inv(T ) = 4,

xT = x21 x2x3x4x
2
5 x6



LLT Polynomials

A semistandard tableau on ν is a map T : ν → Z+ which restricts to a
semistandard tableau on each ν(i).

An attacking inversion in T is an attacking pair (a, b) such
that T (a) > T (b).

The LLT polynomial indexed by a tuple of skew shapes ν is

Gν(x ; q) =
∑

T∈SSYT(ν)

qinv(T )xT ,

where inv(T ) is the number of attacking inversions in T and xT =
∏

a∈ν xT (a).

T =
inversion

2 4

3 5

5 6

1 1

inv(T ) = 4,

xT = x21 x2x3x4x
2
5 x6



LLT Polynomials

A semistandard tableau on ν is a map T : ν → Z+ which restricts to a
semistandard tableau on each ν(i).

An attacking inversion in T is an attacking pair (a, b) such
that T (a) > T (b).

The LLT polynomial indexed by a tuple of skew shapes ν is

Gν(x ; q) =
∑

T∈SSYT(ν)

qinv(T )xT ,

where inv(T ) is the number of attacking inversions in T and xT =
∏

a∈ν xT (a).

T =
inversion

2 4

3 5

5 6

1 1

inv(T ) = 4,

xT = x21 x2x3x4x
2
5 x6



LLT Polynomials

A semistandard tableau on ν is a map T : ν → Z+ which restricts to a
semistandard tableau on each ν(i).

An attacking inversion in T is an attacking pair (a, b) such
that T (a) > T (b).

The LLT polynomial indexed by a tuple of skew shapes ν is

Gν(x ; q) =
∑

T∈SSYT(ν)

qinv(T )xT ,

where inv(T ) is the number of attacking inversions in T and xT =
∏

a∈ν xT (a).

T =

2 4

3 5

5 6

1 1

inv(T ) = 4, xT = x21 x2x3x4x
2
5 x6



LLT Polynomials Gν(X ; q)

Gν(X ; q) is a symmetric function

Gν(X ; 1) = sν(1) · · · sν(r)
Gν were originally defined by Lascoux, Leclerc, and Thibon to explore
connections to Fock space representations of Uq(ŝlr )

When ν(i) are partitions, the Schur-expansion coefficients are
essentially parabolic Kazdhan-Luzstig polynomials.

Gν is Schur-positive for any tuple of skew shapes ν
[Grojnowski-Haiman, 2007].
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A Combinatorial Connection: Shuffle Theorem

Theorem (Carlsson-Mellit, 2018)

∇ek(X ) =
∑
λ

(q, t monomial)(LLT polynomial)

∇ek(X ) =
∑
λ

tarea(λ)qdinv(λ)(LLT polynomial)∇ek(X ) =
∑
λ

tarea(λ)qdinv(λ)ωGν(λ)(X ; q−1)

Summation over all k-by-k Dyck paths.

area(λ) and dinv(λ) statistics of Dyck paths.

Gν(λ)(X ; q) a symmetric LLT polynomial indexed by a tuple of offset
(skew) rows.

ω a standard involution of symmetric polynomials.

Conjectured by (Haiman-Haglund-Loehr-Remmel-Ulyanov, 2002).
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Dyck paths

Dyck paths

A Dyck path λ is a south-east lattice path lying below the line segment
from (0, k) to (k , 0).

δ
λ

area(λ) = number of squares above λ but below the path δ of
alternating S-E steps.

E.g., above area(λ) = 10.

Catalan-number many Dyck paths for fixed k . (1,2,5,14,42,. . . )
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dinv

dinv(λ) =# of balanced hooks in diagram below λ.

a

ℓ

Balanced hook is given by a cell below λ satisfying

ℓ

a+ 1
< 1− ϵ <

ℓ+ 1

a
, ϵ small.
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Example ∇e3

λ qdinv(λ)tarea(λ) qdinv(λ)tarea(λ)ωGν(λ)(X ; q−1)

q3 s3 + qs2,1 + q2s2,1 + q3s1,1,1

q2t qts2,1 + q2ts1,1,1

qt ts2,1 + qts1,1,1

qt2 t2s2,1 + qt2s1,1,1

t3 t3s1,1,1

Entire quantity is q, t-symmetric

Coefficient of s1,1,1 in sum is a “(q, t)-Catalan number”
(q3 + q2t + qt + qt2 + t3) .
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Generalizing Shuffle Theorem

When a problem is too difficult, try generalizing!

Algebraic Expression Combinatorial Expression

∇ek(X ) =
∑

q, t-weighted Dyck paths

Rational Shuffle Conjecture (F. Bergeron, Garsia, Sergel Leven, Xin,
2016) (Proved by Mellit, 2021)

For m, n > 0 coprime, the operator e
(m,n)
k acting on Λ satisfies

e
(m,n)
k · 1 =

∑
q, t-weighted (km, kn)-Dyck paths

•

• λ

(0, kn)

(km, 0)
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Elliptic Hall Algebra

Algebra E ↷ Λ = symmetric polynomials

E comes from algebraic geometry

E ∼= central
subalgebra

⊕
⊕

m,n coprime

Λ(m,n)
Λ(m,n) ∼= symmetric

polynomials

Λ(0,1)Λ(1,3)Λ(2,3)

Λ(1,1)

Λ(3,2)

Λ(3,1)

Λ(1,0)
Λ(−1,0)

Λ(0,−1)

LHS of Shuffle Theorem = e
(1,1)
k ∈ Λ(1,1) acting on 1 ∈ Λ.

LHS of Rational Shuffle Theorem = e
(m,n)
k ∈ Λ(m,n) acting on 1 ∈ Λ.

Can be difficult to work with in general. Can we make it more explicit?
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Root ideals

R+ =
{
αij | 1 ≤ i < j ≤ n

}
denotes the set of positive roots for GLn,

where αij = ϵi − ϵj .
(12)(13)(14)(15)

(23)(24)(25)

(34)(35)

(45)

A root ideal Ψ ⊆ R+ is an upper order ideal of positive roots.

(12)(13)(14)(15)

(23)(24)(25)

(34)(35)

(45)

Ψ = Roots above Dyck path
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Schur functions revisited

Convention: h0 = 1 and hd = 0 for d < 0.

For any γ = (γ1, . . . , γn) ∈ Zn, set

sγ = det(hγi+j−i )1≤i ,j≤n

Then, sγ = ±sλ or 0 for some partition λ.
Precisely, for ρ = (n − 1, n − 2, . . . , 1, 0),

sγ =

{
sgn(γ + ρ)ssort(γ+ρ)−ρ if γ + ρ has distinct nonnegative parts,

0 otherwise,

sort(β) = weakly decreasing sequence obtained by sorting β,
sgn(β) = sign of the shortest permutation taking β to sort(β).

Example: s201 = 0, s2-11 = −s200.
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Weyl symmetrization

Define the Weyl symmetrization operator σ : Q[z±1
1 , . . . , z±1

n ] → Λ(X ) by
linearly extending

zγ 7→ sγ(X )

where zγ = zγ11 · · · zγnn .

Example

σ(z111+z201+z210+z3-11) = s111+ s201+ s210+ s3-11 = s111+ s210− s300
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Catalanimals

Definition

The Catalanimal indexed by Rq,Rt ,Rqt ⊆ R+ and λ ∈ Zn is

H(Rq,Rt ,Rqt , λ) = σ

( zλ
∏

α∈Rqt

(
1− qtzα

)∏
α∈Rq

(
1− qzα

)∏
α∈Rt

(
1− tzα

)) ,

where zαij = zi/zj and (1− tzi/zj)
−1 = 1 + tzi/zj + t2z2i /z

2
j + · · ·.

With n = 3, R+ =

H(R+,R+, {α13}, (111)) = σ
( z111(1− qtz1/z3)∏

1≤i<j≤3(1− qzi/zj)(1− tzi/zj)

)
= s111 + (q + t + q2 + qt + t2)s21 + (qt + q3 + q2t + qt2 + t3)s3

= ω∇e3.
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Why?

Let R+ = {αij | 1 ≤ i < j ≤ l} and R0
+ = {αij ∈ R+ | i + 1 < j}.

Proposition

For (m, n) ∈ Z2
+ coprime,

e
(m,n)
k · 1 = H(R+,R+,R

0
+,b)

for b = (b0, . . . , bkm−1) satisfying bi = the number of south steps on
vertical line x = i of highest lattice path under line y + n

mx = n.

δ = highest Dyck path.
•

•
δ b = (1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0)
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Results

Manipulating Catalanimal =⇒ a proof of the Rational Shuffle Theorem +
a generalization.

Theorem (Blasiak-Haiman-Morse-Pun-S., 2023a)

Given r , s ∈ R>0 such that p = s/r irrational, take b = (b1, . . . , bl) ∈ Zl

to be the south step sequence of highest path δ under the line y + px = s.

H(R+,R+,R
0
+,b) =

∑
λ

tarea(λ)qdinvp(λ)ωGν(λ)(X ; q−1)

where summation is over all lattice paths under the line y + px = s,

λ

area(λ) as before
dinvp(λ) = #p-balanced hooks ℓ

a+1 < p < ℓ+1
a
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A Question

Why stop at e
(m,n)
k ?

For which symmetric functions f can we find a Catalanimal such that
f (m,n) · 1 = a Catalanimal?

Answer: for f equal to any LLT polynomial!

Special case: G(1,1)
ν · 1 = ∇Gν(X ; q).
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LLT Catalanimals

For a tuple of skew shapes ν, the LLT Catalanimal Hν = H(Rq,Rt ,Rqt , λ)
is determined by

R+ ⊇ Rq ⊇ Rt ⊇ Rqt ,

R+ \ Rq = pairs of boxes in the same diagonal in the same shape,

Rq \ Rt = the attacking pairs,

Rt \ Rqt = pairs going between adjacent diagonals,

λ: fill each diagonal D of ν with
1 + χ(D contains a row start)− χ(D contains a row end).
Listing this filling in reading order gives λ.
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LLT Catalanimals

R+ \ Rq = pairs of boxes in the same diagonal,

Rq \ Rt = the attacking pairs,

Rt \ Rqt = pairs going between adjacent diagonals,

Rqt = all other pairs,

λ: fill each diagonal D of ν with
1 + χ(D contains a row start)− χ(D contains a row end).

b1 b2
b4 b7

b3 b6
b5 b8

ν

2

0

2

2

1

1

0

0



LLT Catalanimals

R+ \ Rq = pairs of boxes in the same diagonal,

Rq \ Rt = the attacking pairs,

Rt \ Rqt = pairs going between adjacent diagonals,

Rqt = all other pairs,

λ: fill each diagonal D of ν with
1 + χ(D contains a row start)− χ(D contains a row end).

2 0

2 0

2 1

1 0

λ, as a filling of ν

2

0

2

2

1

1

0

0



LLT Catalanimals

Theorem (Blasiak-Haiman-Morse-Pun-S., 2021+)

Let ν be a tuple of skew shapes and let Hν = H(Rq,Rt ,Rqt , λ) be the
associated LLT Catalanimal. Then

∇Gν(X ; q) = cν ωHν

= cν ωσ

( zλ
∏

α∈Rqt

(
1− qt zα

)∏
α∈Rq

(
1− q zα

)∏
α∈Rt

(
1− t zα

))
for some cν ∈ ±qZtZ.



What about Macdonald polynomials?!

Remember ∇H̃µ = qn(µ)tn(µ
∗)H̃µ.

We have a formula for ∇Gν .

Does there exist formula H̃µ =
∑

ν aµν(q, t)Gν ? Yes!
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Haglund-Haiman-Loehr formula example

H̃µ(X ; q, t) =
∑

D

(∏
u∈D q−arm(u)t leg(u)+1

)
Gν(µ,D)(X ; q)

b1

b2 b3

b4 b5

µ

1

2

3

4

5

D = {b1, b2, b3}

q91t4
1 2

3

4

5

D = {b2, b3}

q91t3

1

2

3

4

5

D = {b1, b2}

q91t3
1

2

3

4

5

D = {b1, b3}
t2

1 2

3

4

5

D = {b2}

q91t2 1 2

3

4

5

D = {b3}

t
1

2

3

4

5

D = {b1}

t 1 2

3

4

5

D = ∅

1
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Putting it all together

Take HHL formula H̃µ =
∑

D aµ,DGν(µ,D) and apply ω∇.

By construction, all the LLT Catalanimals Hν(µ,D) appearing on the
RHS will have the same root ideal data (Rq,Rt ,Rqt).

Collect terms to get
∏

(bi ,bj )∈V (µ)(1− qarm(bi )+1t−leg(bi )zi/zj) factor

for V (µ) the set of vertical dominoes (bi , bj) in µ.

H̃µ = ωσ

(
z1 · · · zn

∏
αij∈V (µ)

(
1− qarm(bi )+1t−leg(bi )zi/zj

) ∏
α∈R̂µ

(
1− qtzα

)
∏

α∈R+

(
1− qzα

)∏
α∈Rµ

(
1− tzα

) )
.
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The root ideal Rµ

b1

b2 b3

b4 b5 b6

b7 b8 b9

row reading order

b1 ≺ b2 ≺ · · · ≺ bn

Rµ :=
{
αij ∈ R+ | south(bi ) ⪯ bj

}
,

R̂µ :=
{
αij ∈ R+ | south(bi ) ≺ bj

}
,

Rµ \ R̂µ ↔ V (µ) = vertical dominoes in µ

Example:

R3321 =

Remark

H̃µ(X ; 0, t) = ωσ
( z1 · · · zn∏

α∈Rµ
(1− tzα)

)
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Example

b1

b2

b3 b4

b5 b6

b7 b8

partition µ = 22211

1

1

1

1

1

1

1

1
Rµ \ R̂µ (t factors)

R̂µ (t and qt factors)



Example

1 9 q z1
z2

1 9 qt91 z2
z3

1 9 q2t92 z3
z5

1 9 q z4
z6

1 9 q2t93 z5
z7

1 9 qt91 z6
z8

numerator factors 1− qarm+1t−legzi/zj

1

1

1

1

1

1

1

1
Rµ \ R̂µ (t factors)

R̂µ (t and qt factors)

H̃22211

q

qt91

q2t92

q

q2t93

qt91



q = t = 1 specialization

ωσ

(
z1 · · · zn

∏
αij∈Rµ\R̂µ

(
1− qarm(bi )+1t−leg(bi )zi/zj

) ∏
α∈R̂µ

(
1− qtzα

)
∏

α∈R+

(
1− qzα

)∏
α∈Rµ

(
1− tzα

) )
q=t=1→ ωσ

(
z1 · · · zn

∏
α∈Rµ\R̂µ

(1− zα)
∏

α∈R̂µ
(1− zα)∏

α∈R+
(1− zα)

∏
α∈Rµ

(1− zα)

)

=ωσ

(
z1 · · · zn∏

α∈R+
(1− zα)

)
=ωhn1

=en1



A positivity conjecture

What can this formula tell us that other formulas for Macdonald
polynomials do not?

H̃(s)
µ := ωσ

(z1 · · · zn)s

∏
αij∈Rµ\R̂µ

(
1− qarm(bi )+1t−leg(bi )zi/zj

) ∏
α∈R̂µ

(
1− qtzα

)
∏

α∈R+

(
1− qzα

)∏
α∈Rµ

(
1− tzα

)


Conjecture (Blasiak-Haiman-Morse-Pun-S.)

For any partition µ and positive integer s, the symmetric function H̃
(s)
µ is

Schur positive. That is, the coefficients in

H̃(s)
µ =

∑
ν

K (s)
ν,µ(q, t) sν(X )

satisfy K
(s)
ν,µ(q, t) ∈ N[q, t].
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Symmetric functions, representation theory, and
combinatorics

Symmetric function Representation theory Combinatorics

sλ(X ) Irreducible Vλ SSYT(λ)

H̃λ(X ; q, t) Garsia-Haiman Mλ HHL
∇en DHn Shuffle theorem

H̃
(s)
λ (X ; q, t) ?? ??



Thank you!
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