A Raising Operator Formula for Macdonald Polynomials and other related families

George H. Seelinger
joint work with J. Blasiak, M. Haiman, J. Morse, and A. Pun

ghseeli@umich.edu
York University Applied Algebra Seminar

5 February 2024

Outline

(1) Background on symmetric functions and Macdonald polynomials
(2) Shuffle theorems, combinatorics, and LLT polynomials
(3) A new formula for Macdonald polynomials

Symmetric Polynomials

- Polynomials $f \in \mathbb{Q}(q, t)\left[x_{1}, \ldots, x_{n}\right]$ satisfying $\sigma . f=f$ for all $\sigma \in S_{n}$.

Symmetric Polynomials

- Polynomials $f \in \mathbb{Q}(q, t)\left[x_{1}, \ldots, x_{n}\right]$ satisfying $\sigma . f=f$ for all $\sigma \in S_{n}$.

Generators

$$
e_{r}=\sum_{i_{1}<i_{2}<\cdots<i_{r}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{r}} \text { or } h_{r}=\sum_{i_{1} \leq i_{2} \leq \cdots \leq i_{r}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{r}}
$$

Symmetric Polynomials

- Polynomials $f \in \mathbb{Q}(q, t)\left[x_{1}, \ldots, x_{n}\right]$ satisfying $\sigma . f=f$ for all $\sigma \in S_{n}$.

Generators

$$
e_{r}=\sum_{i_{1}<i_{2}<\cdots<i_{r}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{r}} \text { or } h_{r}=\sum_{i_{1} \leq i_{2} \leq \cdots \leq i_{r}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{r}}
$$

- E.g. for $n=3$,

$$
\begin{aligned}
& e_{1}=x_{1}+x_{2}+x_{3}=h_{1} \\
& e_{2}=x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3} h_{2}=x_{1}^{2}+x_{1} x_{2}+x_{1} x_{3}+x_{2}^{2}+x_{2} x_{3}+x_{3}^{2} \\
& e_{3}=x_{1} x_{2} x_{3} h_{3}=x_{1}^{3}+x_{1}^{2} x_{2}+x_{1}^{2} x_{3}+x_{1} x_{2}^{2}+\cdots
\end{aligned}
$$

Symmetric Polynomials

- Polynomials $f \in \mathbb{Q}(q, t)\left[x_{1}, \ldots, x_{n}\right]$ satisfying $\sigma . f=f$ for all $\sigma \in S_{n}$.

Generators

$$
e_{r}=\sum_{i_{1}<i_{2}<\cdots<i_{r}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{r}} \text { or } h_{r}=\sum_{i_{1} \leq i_{2} \leq \cdots \leq i_{r}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{r}}
$$

- E.g. for $n=3$,

$$
\begin{aligned}
& e_{1}=x_{1}+x_{2}+x_{3}=h_{1} \\
& e_{2}=x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3} h_{2}=x_{1}^{2}+x_{1} x_{2}+x_{1} x_{3}+x_{2}^{2}+x_{2} x_{3}+x_{3}^{2} \\
& e_{3}=x_{1} x_{2} x_{3} h_{3}=x_{1}^{3}+x_{1}^{2} x_{2}+x_{1}^{2} x_{3}+x_{1} x_{2}^{2}+\cdots
\end{aligned}
$$

- Let $\Lambda=\mathbb{Q}(q, t)\left[e_{1}, e_{2}, \ldots\right]=\mathbb{Q}(q, t)\left[h_{1}, h_{2}, \ldots\right]$. Call these "symmetric functions."

Symmetric Polynomials

- Polynomials $f \in \mathbb{Q}(q, t)\left[x_{1}, \ldots, x_{n}\right]$ satisfying $\sigma . f=f$ for all $\sigma \in S_{n}$.

Generators

$$
e_{r}=\sum_{i_{1}<i_{2}<\cdots<i_{r}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{r}} \text { or } h_{r}=\sum_{i_{1} \leq i_{2} \leq \cdots \leq i_{r}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{r}}
$$

- E.g. for $n=3$,

$$
\begin{aligned}
& e_{1}=x_{1}+x_{2}+x_{3}=h_{1} \\
& e_{2}=x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3} h_{2}=x_{1}^{2}+x_{1} x_{2}+x_{1} x_{3}+x_{2}^{2}+x_{2} x_{3}+x_{3}^{2} \\
& e_{3}=x_{1} x_{2} x_{3} h_{3}=x_{1}^{3}+x_{1}^{2} x_{2}+x_{1}^{2} x_{3}+x_{1} x_{2}^{2}+\cdots
\end{aligned}
$$

- Let $\Lambda=\mathbb{Q}(q, t)\left[e_{1}, e_{2}, \ldots\right]=\mathbb{Q}(q, t)\left[h_{1}, h_{2}, \ldots\right]$. Call these "symmetric functions."
- Λ is a $\mathbb{Q}(q, t)$-algebra.

Bases for symmetric functions

Dimension of degree d symmetric functions?

Bases for symmetric functions

Dimension of degree d symmetric functions? Number of partitions of d.

Bases for symmetric functions

Dimension of degree d symmetric functions? Number of partitions of d.

Definition

$n \in \mathbb{Z}_{>0}$, a partition of n is $\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{\ell}>0\right)$ such that $\lambda_{1}+\lambda_{2}+\cdots+\lambda_{\ell}=n$.

Bases for symmetric functions

Dimension of degree d symmetric functions？Number of partitions of d ．

Definition

$n \in \mathbb{Z}_{>0}$ ，a partition of n is $\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{\ell}>0\right)$ such that $\lambda_{1}+\lambda_{2}+\cdots+\lambda_{\ell}=n$ ．

$$
\begin{array}{rlrl}
5 & \rightarrow \square & 2+2+1 & \rightarrow 母 \\
4+1 & \rightarrow 母 \square & \rightarrow 母 \\
3+1+1+1 & \rightarrow 母 \\
3+1+1 & \rightarrow 母_{\square} & 1+1+1+1+1 & \rightarrow 母 \\
3+1 &
\end{array}
$$

Bases for symmetric functions

Dimension of degree d symmetric functions? Number of partitions of d.

Definition

$n \in \mathbb{Z}_{>0}$, a partition of n is $\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{\ell}>0\right)$ such that $\lambda_{1}+\lambda_{2}+\cdots+\lambda_{\ell}=n$.

$$
\begin{aligned}
5 & \rightarrow \square \square \square \\
4+1 & \rightarrow \square_{\square} \\
3+2 & \rightarrow \square^{\square} \\
3+1+1 & \rightarrow 母_{\square}
\end{aligned}
$$

\Longrightarrow any basis of symmetric functions is indexed by partitions.

Young Tableaux

Definition

Filling of partition diagram of λ with numbers such that

Young Tableaux

Definition

Filling of partition diagram of λ with numbers such that
(1) strictly increasing up columns

Young Tableaux

Definition

Filling of partition diagram of λ with numbers such that
(1) strictly increasing up columns
(2) weakly increasing along rows

Young Tableaux

Definition

Filling of partition diagram of λ with numbers such that
(1) strictly increasing up columns
(2) weakly increasing along rows

Collection is called $\operatorname{SSYT}(\lambda)$.

Young Tableaux

Definition

Filling of partition diagram of λ with numbers such that
(1) strictly increasing up columns
(2) weakly increasing along rows

Collection is called $\operatorname{SSYT}(\lambda)$.
For $\lambda=(2,1)$,

Polynomials from tableaux

Associate a polynomial to $\operatorname{SSYT}(\lambda)$.

Polynomials from tableaux

Associate a polynomial to $\operatorname{SSYT}(\lambda)$.

Polynomials from tableaux

Associate a polynomial to $\operatorname{SSYT}(\lambda)$.

$$
s_{(2,1)}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2} x_{2}+x_{1}^{2} x_{3}+x_{2}^{2} x_{3}+x_{1} x_{2}^{2}+x_{1} x_{3}^{2}+x_{2} x_{3}^{2}+2 x_{1} x_{2} x_{3}
$$

Polynomials from tableaux

Associate a polynomial to $\operatorname{SSYT}(\lambda)$.

$$
s_{(2,1)}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2} x_{2}+x_{1}^{2} x_{3}+x_{2}^{2} x_{3}+x_{1} x_{2}^{2}+x_{1} x_{3}^{2}+x_{2} x_{3}^{2}+2 x_{1} x_{2} x_{3}
$$

Definition

For λ a partition

$$
s_{\lambda}=\sum_{T \in \operatorname{SSYT}(\lambda)} \boldsymbol{x}^{T} \text { for } \boldsymbol{x}^{T}=\prod_{i \in T} x_{i}
$$

Polynomials from tableaux

Associate a polynomial to $\operatorname{SSYT}(\lambda)$.

$$
s_{(2,1)}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2} x_{2}+x_{1}^{2} x_{3}+x_{2}^{2} x_{3}+x_{1} x_{2}^{2}+x_{1} x_{3}^{2}+x_{2} x_{3}^{2}+2 x_{1} x_{2} x_{3}
$$

Definition

For λ a partition

$$
s_{\lambda}=\sum_{T \in \operatorname{SSYT}(\lambda)} \boldsymbol{x}^{T} \text { for } \boldsymbol{x}^{T}=\prod_{i \in T} x_{i}
$$

- s_{λ} is a symmetric function.

Polynomials from tableaux

Associate a polynomial to $\operatorname{SSYT}(\lambda)$.

$$
s_{(2,1)}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2} x_{2}+x_{1}^{2} x_{3}+x_{2}^{2} x_{3}+x_{1} x_{2}^{2}+x_{1} x_{3}^{2}+x_{2} x_{3}^{2}+2 x_{1} x_{2} x_{3}
$$

Definition

For λ a partition

$$
s_{\lambda}=\sum_{T \in \operatorname{SSYT}(\lambda)} \boldsymbol{x}^{T} \text { for } \boldsymbol{x}^{T}=\prod_{i \in T} x_{i}
$$

- s_{λ} is a symmetric function.
- $\left\{s_{\lambda}\right\}_{\lambda}$ forms a basis for $\Lambda_{\mathbb{Q}}$.

Representation theory and Schur functions

Frobenius charactersitc, Frob: $\operatorname{Rep}\left(S_{n}\right) \rightarrow \Lambda$.

Representation theory and Schur functions

Frobenius charactersitc, Frob: $\operatorname{Rep}\left(S_{n}\right) \rightarrow \Lambda$.

- Irreducible representations of S_{n} are labeled by partitions of n.

Representation theory and Schur functions

Frobenius charactersitc, Frob: $\operatorname{Rep}\left(S_{n}\right) \rightarrow \Lambda$.

- Irreducible representations of S_{n} are labeled by partitions of n.
- Irreducible S_{n}-representation V_{λ} has $\operatorname{Frob}\left(V_{\lambda}\right)=s_{\lambda}$

Representation theory and Schur functions

Frobenius charactersitc, Frob: $\operatorname{Rep}\left(S_{n}\right) \rightarrow \Lambda$.

- Irreducible representations of S_{n} are labeled by partitions of n.
- Irreducible S_{n}-representation V_{λ} has $\operatorname{Frob}\left(V_{\lambda}\right)=s_{\lambda}$
- $U \cong V \oplus W \Longrightarrow \operatorname{Frob}(U)=\operatorname{Frob}(V)+\operatorname{Frob}(W)$

Representation theory and Schur functions

Frobenius charactersitc, Frob: $\operatorname{Rep}\left(S_{n}\right) \rightarrow \Lambda$.

- Irreducible representations of S_{n} are labeled by partitions of n.
- Irreducible S_{n}-representation V_{λ} has $\operatorname{Frob}\left(V_{\lambda}\right)=s_{\lambda}$
- $U \cong V \oplus W \Longrightarrow \operatorname{Frob}(U)=\operatorname{Frob}(V)+\operatorname{Frob}(W)$
- $\operatorname{Ind}_{S_{m} \times S_{n}}^{S_{m+n}}(V \times W) \mapsto \operatorname{Frob}(V) \cdot \operatorname{Frob}(W)$

Representation theory and Schur functions

Frobenius charactersitc, Frob: $\operatorname{Rep}\left(S_{n}\right) \rightarrow \Lambda$.

- Irreducible representations of S_{n} are labeled by partitions of n.
- Irreducible S_{n}-representation V_{λ} has $\operatorname{Frob}\left(V_{\lambda}\right)=s_{\lambda}$
- $U \cong V \oplus W \Longrightarrow \operatorname{Frob}(U)=\operatorname{Frob}(V)+\operatorname{Frob}(W)$
- $\operatorname{Ind}_{S_{m} \times S_{n}}^{S_{m+n}}(V \times W) \mapsto \operatorname{Frob}(V) \cdot \operatorname{Frob}(W)$
- Upshot: S_{n}-representations go to symmetric functions in structure preserving way.

Representation theory and Schur functions

Frobenius charactersitc, Frob: $\operatorname{Rep}\left(S_{n}\right) \rightarrow \Lambda$.

- Irreducible representations of S_{n} are labeled by partitions of n.
- Irreducible S_{n}-representation V_{λ} has $\operatorname{Frob}\left(V_{\lambda}\right)=s_{\lambda}$
- $U \cong V \oplus W \Longrightarrow \operatorname{Frob}(U)=\operatorname{Frob}(V)+\operatorname{Frob}(W)$
- $\operatorname{Ind}_{S_{m} \times S_{n}}^{S_{m+n}}(V \times W) \mapsto \operatorname{Frob}(V) \cdot \operatorname{Frob}(W)$
- Upshot: S_{n}-representations go to symmetric functions in structure preserving way.

Hidden Guide: Schur Positivity

"Naturally occurring" symmetric functions which are non-negative (coefficients in \mathbb{N}) linear combinations in Schur polynomial basis are interesting since they could have representation-theoretic models.

Harmonic polynomials

Harmonic polynomials

$M=$ polynomials killed by all symmetric differential operators.

Harmonic polynomials

Harmonic polynomials

$M=$ polynomials killed by all symmetric differential operators.
Explicitly, for

$$
\Delta=\operatorname{det}\left|\begin{array}{lll}
x_{1}^{2} & x_{1} & 1 \\
x_{2}^{2} & x_{2} & 1 \\
x_{3}^{2} & x_{3} & 1
\end{array}\right|=x_{1}^{2}\left(x_{2}-x_{3}\right)-x_{2}^{2}\left(x_{1}-x_{3}\right)+x_{3}^{2}\left(x_{1}-x_{2}\right)
$$

Harmonic polynomials

Harmonic polynomials

$M=$ polynomials killed by all symmetric differential operators.
Explicitly, for

$$
\Delta=\operatorname{det}\left|\begin{array}{lll}
x_{1}^{2} & x_{1} & 1 \\
x_{2}^{2} & x_{2} & 1 \\
x_{3}^{2} & x_{3} & 1
\end{array}\right|=x_{1}^{2}\left(x_{2}-x_{3}\right)-x_{2}^{2}\left(x_{1}-x_{3}\right)+x_{3}^{2}\left(x_{1}-x_{2}\right)
$$

M is the vector space given by

Harmonic polynomials

Harmonic polynomials

$M=$ polynomials killed by all symmetric differential operators.
Explicitly, for

$$
\Delta=\operatorname{det}\left|\begin{array}{lll}
x_{1}^{2} & x_{1} & 1 \\
x_{2}^{2} & x_{2} & 1 \\
x_{3}^{2} & x_{3} & 1
\end{array}\right|=x_{1}^{2}\left(x_{2}-x_{3}\right)-x_{2}^{2}\left(x_{1}-x_{3}\right)+x_{3}^{2}\left(x_{1}-x_{2}\right)
$$

M is the vector space given by

$$
\begin{aligned}
M= & \operatorname{sp}\left\{\left(\partial_{x_{1}}^{a} \partial_{x_{2}}^{b} \partial_{x_{3}}^{c}\right) \Delta \mid a, b, c \geq 0\right\} \\
= & \operatorname{sp}\left\{\Delta, 2 x_{1}\left(x_{2}-x_{3}\right)-x_{2}^{2}+x_{3}^{2}, 2 x_{2}\left(x_{3}-x_{1}\right)-x_{3}^{2}+x_{1}^{2}\right. \\
& \left.x_{3}-x_{1}, x_{2}-x_{3}, 1\right\}
\end{aligned}
$$

Harmonic polynomials

$$
\operatorname{sp}\left\{\Delta, 2 x_{1}\left(x_{2}-x_{3}\right)-x_{2}^{2}+x_{3}^{2}, 2 x_{2}\left(x_{3}-x_{1}\right)-x_{3}^{2}+x_{1}^{2}, x_{3}-x_{1}, x_{2}-x_{3}, 1\right\}
$$

Harmonic polynomials

$$
\operatorname{sp}\left\{\Delta, 2 x_{1}\left(x_{2}-x_{3}\right)-x_{2}^{2}+x_{3}^{2}, 2 x_{2}\left(x_{3}-x_{1}\right)-x_{3}^{2}+x_{1}^{2}, x_{3}-x_{1}, x_{2}-x_{3}, 1\right\}
$$

(1) Break M up into irreducible S_{n}-representations.

Harmonic polynomials

$$
\operatorname{sp}\left\{\Delta, 2 x_{1}\left(x_{2}-x_{3}\right)-x_{2}^{2}+x_{3}^{2}, 2 x_{2}\left(x_{3}-x_{1}\right)-x_{3}^{2}+x_{1}^{2}, x_{3}-x_{1}, x_{2}-x_{3}, 1\right\}
$$

(1) Break M up into irreducible S_{n}-representations.

Harmonic polynomials

$$
\operatorname{sp}\left\{\Delta, 2 x_{1}\left(x_{2}-x_{3}\right)-x_{2}^{2}+x_{3}^{2}, 2 x_{2}\left(x_{3}-x_{1}\right)-x_{3}^{2}+x_{1}^{2}, x_{3}-x_{1}, x_{2}-x_{3}, 1\right\}
$$

(1) Break M up into irreducible S_{n}-representations.

(2) How many times does an irreducible S_{n}-representation occur?

Harmonic polynomials

$$
\operatorname{sp}\left\{\Delta, 2 x_{1}\left(x_{2}-x_{3}\right)-x_{2}^{2}+x_{3}^{2}, 2 x_{2}\left(x_{3}-x_{1}\right)-x_{3}^{2}+x_{1}^{2}, x_{3}-x_{1}, x_{2}-x_{3}, 1\right\}
$$

(1) Break M up into irreducible S_{n}-representations.

(2) How many times does an irreducible S_{n}-representation occur?

Frobenius:

Harmonic polynomials

$\operatorname{sp}\left\{\Delta, 2 x_{1}\left(x_{2}-x_{3}\right)-x_{2}^{2}+x_{3}^{2}, 2 x_{2}\left(x_{3}-x_{1}\right)-x_{3}^{2}+x_{1}^{2}, x_{3}-x_{1}, x_{2}-x_{3}, 1\right\}$
(1) Break M up into irreducible S_{n}-representations.

(2) How many times does an irreducible S_{n}-representation occur?

Frobenius:

$$
e_{1}^{3}=\left(x_{1}+x_{2}+x_{3}\right)^{3}=s_{\square}+s_{\square}+s_{\square}+s_{\square \square}
$$

Harmonic polynomials

$\operatorname{sp}\left\{\Delta, 2 x_{1}\left(x_{2}-x_{3}\right)-x_{2}^{2}+x_{3}^{2}, 2 x_{2}\left(x_{3}-x_{1}\right)-x_{3}^{2}+x_{1}^{2}, x_{3}-x_{1}, x_{2}-x_{3}, 1\right\}$
(1) Break M up into irreducible S_{n}-representations.

(2) How many times does an irreducible S_{n}-representation occur?

Frobenius:

$$
e_{1}^{3}=\left(x_{1}+x_{2}+x_{3}\right)^{3}=s_{\square}+s_{\square}+s_{\square}+s_{\square \square}
$$

Remark: $M \cong \mathbb{C}\left[x_{1}, x_{2}, x_{3}\right] /\left(\mathbb{C}\left[x_{1}, x_{2}, x_{3}\right]_{+}^{S_{3}}\right)$ is a "regular representation."

Getting more information

Getting more information

Break M up into smallest S_{n} fixed subspaces

Getting more information

Break M up into smallest S_{n} fixed subspaces

Solution: irreducible S_{n}-representation of polynomials of degree $d \mapsto q^{d} s_{\lambda}$ (graded Frobenius)

$$
? ?=q^{3} s q^{2} s q^{2}+q s \square+s \square \square
$$

Getting more information

Break M up into smallest S_{n} fixed subspaces

Solution: irreducible S_{n}-representation of polynomials of degree $d \mapsto q^{d} s_{\lambda}$ (graded Frobenius)

$$
? ?=q^{3} s q^{2} s q^{2}+q s \square+s \square \square
$$

Answer: Hall-Littlewood polynomial $H_{\square}(X ; q)$.

A Problem

- In 1988, Macdonald introduces one basis of symmetric polynomials to rule them all!

A Problem

- In 1988, Macdonald introduces one basis of symmetric polynomials to rule them all!
- Coefficients in $\mathbb{Q}(q, t)$, specializations give Hall-Littlewood polynomials, Schur polynomials, and many other famous bases.

A Problem

- In 1988, Macdonald introduces one basis of symmetric polynomials to rule them all!
- Coefficients in $\mathbb{Q}(q, t)$, specializations give Hall-Littlewood polynomials, Schur polynomials, and many other famous bases.
- Defined by orthogonality and triangularity under a certain inner-product.

A Problem

- In 1988, Macdonald introduces one basis of symmetric polynomials to rule them all!
- Coefficients in $\mathbb{Q}(q, t)$, specializations give Hall-Littlewood polynomials, Schur polynomials, and many other famous bases.
- Defined by orthogonality and triangularity under a certain inner-product.
- Garsia modifies these polynomials so

$$
\tilde{H}_{\lambda}(X ; q, t)=\sum_{\mu} \tilde{K}(q, t) s_{\mu} \text { conjecturally satisfies } \tilde{K}(q, t) \in \mathbb{N}[q, t]
$$

A Problem

- In 1988, Macdonald introduces one basis of symmetric polynomials to rule them all!
- Coefficients in $\mathbb{Q}(q, t)$, specializations give Hall-Littlewood polynomials, Schur polynomials, and many other famous bases.
- Defined by orthogonality and triangularity under a certain inner-product.
- Garsia modifies these polynomials so

$$
\tilde{H}_{\lambda}(X ; q, t)=\sum_{\mu} \tilde{K}(q, t) s_{\mu} \text { conjecturally satisfies } \tilde{K}(q, t) \in \mathbb{N}[q, t]
$$

- $\tilde{H}_{\lambda}(X ; 1,1)=e_{1}^{|\lambda|}$.

A Problem

- In 1988, Macdonald introduces one basis of symmetric polynomials to rule them all!
- Coefficients in $\mathbb{Q}(q, t)$, specializations give Hall-Littlewood polynomials, Schur polynomials, and many other famous bases.
- Defined by orthogonality and triangularity under a certain inner-product.
- Garsia modifies these polynomials so

$$
\tilde{H}_{\lambda}(X ; q, t)=\sum_{\mu} \tilde{K}(q, t) s_{\mu} \text { conjecturally satisfies } \tilde{K}(q, t) \in \mathbb{N}[q, t]
$$

- $\tilde{H}_{\lambda}(X ; 1,1)=e_{1}^{|\lambda|}$.
- Does there exist a family of S_{n}-regular representations whose bigraded Frobenius characteristics equal $\tilde{H}_{\lambda}(X ; q, t)$?

Garsia-Haiman modules

- $\mathbb{Q}\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right]$ with $\sigma\left(x_{i}\right)=x_{\sigma(i)}, \sigma\left(y_{j}\right)=y_{\sigma(j)}$.

Garsia-Haiman modules

- $\mathbb{Q}\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right]$ with $\sigma\left(x_{i}\right)=x_{\sigma(i)}, \sigma\left(y_{j}\right)=y_{\sigma(j)}$.
- Garsia-Haiman (1993): $M_{\mu}=$ span of partial derivatives of $\Delta_{\mu}=\operatorname{det}_{(i, j) \in \mu, k \in[n]}\left(x_{k}^{i-1} y_{k}^{j-1}\right)$

Garsia-Haiman modules

- $\mathbb{Q}\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right]$ with $\sigma\left(x_{i}\right)=x_{\sigma(i)}, \sigma\left(y_{j}\right)=y_{\sigma(j)}$.
- Garsia-Haiman (1993): $M_{\mu}=$ span of partial derivatives of $\Delta_{\mu}=\operatorname{det}_{(i, j) \in \mu, k \in[n]}\left(x_{k}^{i-1} y_{k}^{j-1}\right)$

$$
\Delta_{\square}=\operatorname{det}\left|\begin{array}{lll}
1 & y_{1} & x_{1} \\
1 & y_{2} & x_{2} \\
1 & y_{3} & x_{3}
\end{array}\right|=x_{3} y_{2}-y_{3} x_{2}-y_{1} x_{3}+y_{1} x_{2}+y_{3} x_{1}-y_{2} x_{1}
$$

Garsia-Haiman modules

- $\mathbb{Q}\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right]$ with $\sigma\left(x_{i}\right)=x_{\sigma(i)}, \sigma\left(y_{j}\right)=y_{\sigma(j)}$.
- Garsia-Haiman (1993): $M_{\mu}=$ span of partial derivatives of $\Delta_{\mu}=\operatorname{det}_{(i, j) \in \mu, k \in[n]}\left(x_{k}^{i-1} y_{k}^{j-1}\right)$

$$
\Delta_{\square}=\operatorname{det}\left|\begin{array}{lll}
1 & y_{1} & x_{1} \\
1 & y_{2} & x_{2} \\
1 & y_{3} & x_{3}
\end{array}\right|=x_{3} y_{2}-y_{3} x_{2}-y_{1} x_{3}+y_{1} x_{2}+y_{3} x_{1}-y_{2} x_{1}
$$

$$
M_{2,1}=\underbrace{\operatorname{sp}\left\{\Delta_{2,1}\right\}}_{\operatorname{deg}=(1,1)} \oplus \underbrace{\operatorname{sp}\left\{y_{3}-y_{1}, y_{1}-y_{2}\right\}}_{\operatorname{deg}=(0,1)} \oplus \underbrace{\operatorname{sp}\left\{x_{3}-x_{1}, x_{1}-x_{2}\right\}}_{\operatorname{deg}=(1,0)} \oplus \underbrace{\operatorname{sp}\{1\}}_{\operatorname{deg}=(0,0)}
$$

Garsia-Haiman modules

- $\mathbb{Q}\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right]$ with $\sigma\left(x_{i}\right)=x_{\sigma(i)}, \sigma\left(y_{j}\right)=y_{\sigma(j)}$.
- Garsia-Haiman (1993): $M_{\mu}=$ span of partial derivatives of $\Delta_{\mu}=\operatorname{det}_{(i, j) \in \mu, k \in[n]}\left(x_{k}^{i-1} y_{k}^{j-1}\right)$

$$
\Delta_{\square}=\operatorname{det}\left|\begin{array}{lll}
1 & y_{1} & x_{1} \\
1 & y_{2} & x_{2} \\
1 & y_{3} & x_{3}
\end{array}\right|=x_{3} y_{2}-y_{3} x_{2}-y_{1} x_{3}+y_{1} x_{2}+y_{3} x_{1}-y_{2} x_{1}
$$

$$
M_{2,1}=\underbrace{\operatorname{sp}\left\{\Delta_{2,1}\right\}}_{\operatorname{deg}=(1,1)} \oplus \underbrace{\operatorname{sp}\left\{y_{3}-y_{1}, y_{1}-y_{2}\right\}}_{\operatorname{deg}=(0,1)} \oplus \underbrace{\operatorname{sp}\left\{x_{3}-x_{1}, x_{1}-x_{2}\right\}}_{\operatorname{deg}=(1,0)} \oplus \underbrace{\operatorname{sp}\{1\}}_{\operatorname{deg}=(0,0)}
$$

Irreducible S_{n}-representation with bidegree $(a, b) \mapsto q^{a} t^{b} s_{\lambda}$

Garsia-Haiman modules

- $\mathbb{Q}\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right]$ with $\sigma\left(x_{i}\right)=x_{\sigma(i)}, \sigma\left(y_{j}\right)=y_{\sigma(j)}$.
- Garsia-Haiman (1993): $M_{\mu}=$ span of partial derivatives of $\Delta_{\mu}=\operatorname{det}_{(i, j) \in \mu, k \in[n]}\left(x_{k}^{i-1} y_{k}^{j-1}\right)$

$$
\Delta_{\square}=\operatorname{det}\left|\begin{array}{lll}
1 & y_{1} & x_{1} \\
1 & y_{2} & x_{2} \\
1 & y_{3} & x_{3}
\end{array}\right|=x_{3} y_{2}-y_{3} x_{2}-y_{1} x_{3}+y_{1} x_{2}+y_{3} x_{1}-y_{2} x_{1}
$$

$$
M_{2,1}=\underbrace{\operatorname{sp}\left\{\Delta_{2,1}\right\}}_{\operatorname{deg}=(1,1)} \oplus \underbrace{\operatorname{sp}\left\{y_{3}-y_{1}, y_{1}-y_{2}\right\}}_{\operatorname{deg}=(0,1)} \oplus \underbrace{\operatorname{sp}\left\{x_{3}-x_{1}, x_{1}-x_{2}\right\}}_{\operatorname{deg}=(1,0)} \oplus \underbrace{\operatorname{sp}\{1\}}_{\operatorname{deg}=(0,0)}
$$

Irreducible S_{n}-representation with bidegree $(a, b) \mapsto q^{a} t^{b} s_{\lambda}$

Garsia-Haiman modules

Theorem (Haiman, 2001)
The Garsia-Haiman module M_{λ} has bigraded Frobenius characteristic given by $\tilde{H}_{\lambda}(X ; q, t)$

Garsia-Haiman modules

Theorem (Haiman, 2001)
The Garsia-Haiman module M_{λ} has bigraded Frobenius characteristic given by $\tilde{H}_{\lambda}(X ; q, t)$

- Proved via connection to the Hilbert Scheme $\operatorname{Hilb}^{n}\left(\mathbb{C}^{2}\right)$.

Garsia-Haiman modules

Theorem (Haiman, 2001)

The Garsia-Haiman module M_{λ} has bigraded Frobenius characteristic given by $\tilde{H}_{\lambda}(X ; q, t)$

- Proved via connection to the Hilbert Scheme $\operatorname{Hilb}^{n}\left(\mathbb{C}^{2}\right)$.

$$
\begin{aligned}
& \text { Corollary } \\
& \tilde{H}_{\lambda}(X ; q, t)=\sum_{\mu} \tilde{K}_{\lambda \mu}(q, t) s_{\mu} \text { satisfies } \tilde{K}_{\lambda \mu}(q, t) \in \mathbb{N}[q, t] \text {. }
\end{aligned}
$$

Garsia-Haiman modules

Theorem (Haiman, 2001)

The Garsia-Haiman module M_{λ} has bigraded Frobenius characteristic given by $\tilde{H}_{\lambda}(X ; q, t)$

- Proved via connection to the Hilbert Scheme $\operatorname{Hilb}^{n}\left(\mathbb{C}^{2}\right)$.

$$
\begin{aligned}
& \text { Corollary } \\
& \tilde{H}_{\lambda}(X ; q, t)=\sum_{\mu} \tilde{K}_{\lambda \mu}(q, t) s_{\mu} \text { satisfies } \tilde{K}_{\lambda \mu}(q, t) \in \mathbb{N}[q, t] \text {. }
\end{aligned}
$$

- No combinatorial description of $\tilde{K}_{\lambda \mu}(q, t)$.

Symmetric functions, representation theory, and combinatorics

Symmetric function	Representation theory	Combinatorics
$s_{\lambda}(X)$	Irreducible V_{λ}	$\operatorname{SSYT}(\lambda)$
$\tilde{H}_{\lambda}(X ; q, t)$	Garsia-Haiman M_{λ}	$? ?$

Garsia-Haiman modules

Observation

All of these Garsia-Haiman modules are contained in the module of diagonal harmonics:

$$
D H_{n}=\operatorname{sp}\left\{f \in \mathbb{C}\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right] \mid\left(\sum_{j=1}^{n} \partial_{x_{j}}^{r} \partial_{y_{j}}^{s}\right) f=0, \forall r+s>0\right\}
$$

Garsia-Haiman modules

Observation

All of these Garsia-Haiman modules are contained in the module of diagonal harmonics:

$$
D H_{n}=\operatorname{sp}\left\{f \in \mathbb{C}\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right] \mid\left(\sum_{j=1}^{n} \partial_{x_{j}}^{r} \partial_{y_{j}}^{s}\right) f=0, \forall r+s>0\right\}
$$

Question

What symmetric function is the bigraded Frobenius characteristic of $D H_{n}$?

Frobenius characteristic of DH_{3}

∇e_{n}

Frobenius characteristic of DH_{3}

$$
=\frac{t^{3} \tilde{H}_{1,1,1}}{-q t^{2}+t^{3}+q^{2}-q t}-\frac{\left(q^{2} t+q t^{2}+q t\right) \tilde{H}_{2,1}}{-q^{2} t^{2}+q^{3}+t^{3}-q t}-\frac{q^{3} \tilde{H}_{3}}{-q^{3}+q^{2} t+q t-t^{2}}
$$

∇e_{n}

Frobenius characteristic of DH_{3}

$$
=\frac{t^{3} \tilde{H}_{1,1,1}}{-q t^{2}+t^{3}+q^{2}-q t}-\frac{\left(q^{2} t+q t^{2}+q t\right) \tilde{H}_{2,1}}{-q^{2} t^{2}+q^{3}+t^{3}-q t}-\frac{q^{3} \tilde{H}_{3}}{-q^{3}+q^{2} t+q t-t^{2}}
$$

Compare to

$$
e_{3}=\frac{\tilde{H}_{1,1,1}}{-q t^{2}+t^{3}+q^{2}-q t}-\frac{(q+t+1) \tilde{H}_{2,1}}{-q^{2} t^{2}+q^{3}+t^{3}-q t}-\frac{\tilde{H}_{3}}{-q^{3}+q^{2} t+q t-t^{2}}
$$

∇e_{n}

Frobenius characteristic of DH_{3}

$$
=\frac{t^{3} \tilde{H}_{1,1,1}}{-q t^{2}+t^{3}+q^{2}-q t}-\frac{\left(q^{2} t+q t^{2}+q t\right) \tilde{H}_{2,1}}{-q^{2} t^{2}+q^{3}+t^{3}-q t}-\frac{q^{3} \tilde{H}_{3}}{-q^{3}+q^{2} t+q t-t^{2}}
$$

Compare to

$$
e_{3}=\frac{\tilde{H}_{1,1,1}}{-q t^{2}+t^{3}+q^{2}-q t}-\frac{(q+t+1) \tilde{H}_{2,1}}{-q^{2} t^{2}+q^{3}+t^{3}-q t}-\frac{\tilde{H}_{3}}{-q^{3}+q^{2} t+q t-t^{2}}
$$

Operator ∇

$$
\nabla \tilde{H}_{\lambda}(X ; q, t)=q^{n(\lambda)} t^{n\left(\lambda^{*}\right)} \tilde{H}_{\lambda}(X ; q, t),
$$

where $n(\lambda)=\sum_{i}(i-1) \lambda_{i}$ and λ^{*} is the transpose partition to λ.

∇e_{n}

Frobenius characteristic of DH_{3}

$$
=\frac{t^{3} \tilde{H}_{1,1,1}}{-q t^{2}+t^{3}+q^{2}-q t}-\frac{\left(q^{2} t+q t^{2}+q t\right) \tilde{H}_{2,1}}{-q^{2} t^{2}+q^{3}+t^{3}-q t}-\frac{q^{3} \tilde{H}_{3}}{-q^{3}+q^{2} t+q t-t^{2}}
$$

Compare to

$$
e_{3}=\frac{\tilde{H}_{1,1,1}}{-q t^{2}+t^{3}+q^{2}-q t}-\frac{(q+t+1) \tilde{H}_{2,1}}{-q^{2} t^{2}+q^{3}+t^{3}-q t}-\frac{\tilde{H}_{3}}{-q^{3}+q^{2} t+q t-t^{2}}
$$

Operator ∇

$$
\nabla \tilde{H}_{\lambda}(X ; q, t)=q^{n(\lambda)} t^{n\left(\lambda^{*}\right)} \tilde{H}_{\lambda}(X ; q, t),
$$

where $n(\lambda)=\sum_{i}(i-1) \lambda_{i}$ and λ^{*} is the transpose partition to λ.

Theorem (Haiman, 2002)

The bigraded Frobenius characteristic of $D H_{n}$ is given by ∇e_{n}.

Symmetric functions, representation theory, and combinatorics

Symmetric function	Representation theory	Combinatorics
$s_{\lambda}(X)$	Irreducible V_{λ}	$\operatorname{SSYT}(\lambda)$
$\tilde{H}_{\lambda}(X ; q, t)$	Garsia-Haiman M_{λ}	??
∇e_{n}	$D H_{n}$	Shuffle theorem

Outline

(1) Background on symmetric functions and Macdonald polynomials
(2) Shuffle theorems, combinatorics, and LLT polynomials
(3) A new formula for Macdonald polynomials

Key Object: LLT Polynomials

$$
\text { Let } \boldsymbol{\nu}=\left(\nu_{(1)}, \ldots, \nu_{(k)}\right) \text { be a tuple of skew shapes. (Skew shape }=\lambda \backslash \mu \text {) }
$$

$$
\nu=(\square, \square \square)
$$

Key Object: LLT Polynomials

Let $\boldsymbol{\nu}=\left(\nu_{(1)}, \ldots, \nu_{(k)}\right)$ be a tuple of skew shapes. (Skew shape $=\lambda \backslash \mu$)

- The content of a box in row y, column x is $x-y$.

$$
\nu=(\square, \square \square)
$$

-4	-3	-2	-1	0	1
-3	-2	-1	0	1	2
-2	-1	0	1	2	3
-1	0	1	2	3	4
0	1	2	3	4	5

Key Object: LLT Polynomials

Let $\boldsymbol{\nu}=\left(\nu_{(1)}, \ldots, \nu_{(k)}\right)$ be a tuple of skew shapes. (Skew shape $=\lambda \backslash \mu$)

- The content of a box in row y, column x is $x-y$.
- Reading order: label boxes b_{1}, \ldots, b_{n} by scanning each diagonal from southwest to northeast, in order of increasing content.

$$
\nu=\left(\begin{array}{l}
\square \\
\square
\end{array} \square\right)
$$

				b_{3}	b_{6}
				b_{5}	b_{8}
b_{1}	b_{2}				
	b_{4}	b_{7}			

Key Object: LLT Polynomials

Let $\boldsymbol{\nu}=\left(\nu_{(1)}, \ldots, \nu_{(k)}\right)$ be a tuple of skew shapes. (Skew shape $=\lambda \backslash \mu$)

- The content of a box in row y, column x is $x-y$.
- Reading order: label boxes b_{1}, \ldots, b_{n} by scanning each diagonal from southwest to northeast, in order of increasing content.
- A pair $(a, b) \in \boldsymbol{\nu}$ is attacking if a precedes b in reading order and
- content $(b)=\operatorname{content}(a)$, or
- $\operatorname{content}(b)=\operatorname{content}(a)+1$ and $a \in \nu_{(i)}, b \in \nu_{(j)}$ with $i>j$.

$$
\nu=\binom{\square, \square}{\square}
$$

			b_{3} b_{6} b_{5} b_{8} b_{1} b_{2} b_{4}	

Attacking pairs: $\left(b_{2}, b_{3}\right),\left(b_{3}, b_{4}\right),\left(b_{4}, b_{5}\right),\left(b_{4}, b_{6}\right),\left(b_{5}, b_{7}\right),\left(b_{6}, b_{7}\right),\left(b_{7}, b_{8}\right)$

Key Object: LLT Polynomials

Let $\boldsymbol{\nu}=\left(\nu_{(1)}, \ldots, \nu_{(k)}\right)$ be a tuple of skew shapes. (Skew shape $=\lambda \backslash \mu$)

- The content of a box in row y, column x is $x-y$.
- Reading order: label boxes b_{1}, \ldots, b_{n} by scanning each diagonal from southwest to northeast, in order of increasing content.
- A pair $(a, b) \in \boldsymbol{\nu}$ is attacking if a precedes b in reading order and
- content $(b)=\operatorname{content}(a)$, or
- $\operatorname{content}(b)=\operatorname{content}(a)+1$ and $a \in \nu_{(i)}, b \in \nu_{(j)}$ with $i>j$.

$$
\nu=(\square, \square \square)
$$

			b_{3} b_{6} b_{5} b_{8} b_{1} b_{2} b_{4}	

Attacking pairs: $\left(b_{2}, b_{3}\right),\left(b_{3}, b_{4}\right),\left(b_{4}, b_{5}\right),\left(b_{4}, b_{6}\right),\left(b_{5}, b_{7}\right),\left(b_{6}, b_{7}\right),\left(b_{7}, b_{8}\right)$

Key Object: LLT Polynomials

Let $\boldsymbol{\nu}=\left(\nu_{(1)}, \ldots, \nu_{(k)}\right)$ be a tuple of skew shapes. (Skew shape $=\lambda \backslash \mu$)

- The content of a box in row y, column x is $x-y$.
- Reading order: label boxes b_{1}, \ldots, b_{n} by scanning each diagonal from southwest to northeast, in order of increasing content.
- A pair $(a, b) \in \boldsymbol{\nu}$ is attacking if a precedes b in reading order and
- content $(b)=\operatorname{content}(a)$, or
- $\operatorname{content}(b)=\operatorname{content}(a)+1$ and $a \in \nu_{(i)}, b \in \nu_{(j)}$ with $i>j$.

$$
\nu=\binom{\square, \square}{\square}
$$

			b_{3} b_{6} b_{5} b_{8} b_{1} b_{2} b_{4} 		

Attacking pairs: $\left(b_{2}, b_{3}\right),\left(b_{3}, b_{4}\right),\left(b_{4}, b_{5}\right),\left(b_{4}, b_{6}\right),\left(b_{5}, b_{7}\right),\left(b_{6}, b_{7}\right),\left(b_{7}, b_{8}\right)$

Key Object: LLT Polynomials

Let $\boldsymbol{\nu}=\left(\nu_{(1)}, \ldots, \nu_{(k)}\right)$ be a tuple of skew shapes. (Skew shape $=\lambda \backslash \mu$)

- The content of a box in row y, column x is $x-y$.
- Reading order: label boxes b_{1}, \ldots, b_{n} by scanning each diagonal from southwest to northeast, in order of increasing content.
- A pair $(a, b) \in \boldsymbol{\nu}$ is attacking if a precedes b in reading order and
- content $(b)=\operatorname{content}(a)$, or
- $\operatorname{content}(b)=\operatorname{content}(a)+1$ and $a \in \nu_{(i)}, b \in \nu_{(j)}$ with $i>j$.

$$
\nu=\binom{\square, \square}{\square}
$$

			b_{3} b_{6} b_{5} b_{8} b_{1} b_{2} b_{4} 	

Attacking pairs: $\left(b_{2}, b_{3}\right),\left(b_{3}, b_{4}\right),\left(b_{4}, b_{5}\right),\left(b_{4}, b_{6}\right),\left(b_{5}, b_{7}\right),\left(b_{6}, b_{7}\right),\left(b_{7}, b_{8}\right)$

Key Object: LLT Polynomials

Let $\boldsymbol{\nu}=\left(\nu_{(1)}, \ldots, \nu_{(k)}\right)$ be a tuple of skew shapes. (Skew shape $=\lambda \backslash \mu$)

- The content of a box in row y, column x is $x-y$.
- Reading order: label boxes b_{1}, \ldots, b_{n} by scanning each diagonal from southwest to northeast, in order of increasing content.
- A pair $(a, b) \in \boldsymbol{\nu}$ is attacking if a precedes b in reading order and
- content $(b)=\operatorname{content}(a)$, or
- $\operatorname{content}(b)=\operatorname{content}(a)+1$ and $a \in \nu_{(i)}, b \in \nu_{(j)}$ with $i>j$.

$$
\nu=\binom{\square, \square}{\square}
$$

			b_{3} b_{6} b_{5} b_{8} 		
b_{1}	b_{2}				
	b_{4}	b_{7}			

Attacking pairs: $\left(b_{2}, b_{3}\right),\left(b_{3}, b_{4}\right),\left(b_{4}, b_{5}\right),\left(b_{4}, b_{6}\right),\left(b_{5}, b_{7}\right),\left(b_{6}, b_{7}\right),\left(b_{7}, b_{8}\right)$

Key Object: LLT Polynomials

Let $\boldsymbol{\nu}=\left(\nu_{(1)}, \ldots, \nu_{(k)}\right)$ be a tuple of skew shapes. (Skew shape $=\lambda \backslash \mu$)

- The content of a box in row y, column x is $x-y$.
- Reading order: label boxes b_{1}, \ldots, b_{n} by scanning each diagonal from southwest to northeast, in order of increasing content.
- A pair $(a, b) \in \boldsymbol{\nu}$ is attacking if a precedes b in reading order and
- content $(b)=\operatorname{content}(a)$, or
- $\operatorname{content}(b)=\operatorname{content}(a)+1$ and $a \in \nu_{(i)}, b \in \nu_{(j)}$ with $i>j$.

$$
\nu=\binom{\square, \square}{\square}
$$

			b_{3} b_{6} b_{5} b_{8} b_{1} b_{2} b_{4}	

Attacking pairs: $\left(b_{2}, b_{3}\right),\left(b_{3}, b_{4}\right),\left(b_{4}, b_{5}\right),\left(b_{4}, b_{6}\right),\left(b_{5}, b_{7}\right),\left(b_{6}, b_{7}\right),\left(b_{7}, b_{8}\right)$

Key Object: LLT Polynomials

Let $\boldsymbol{\nu}=\left(\nu_{(1)}, \ldots, \nu_{(k)}\right)$ be a tuple of skew shapes. (Skew shape $=\lambda \backslash \mu$)

- The content of a box in row y, column x is $x-y$.
- Reading order: label boxes b_{1}, \ldots, b_{n} by scanning each diagonal from southwest to northeast, in order of increasing content.
- A pair $(a, b) \in \boldsymbol{\nu}$ is attacking if a precedes b in reading order and
- content $(b)=\operatorname{content}(a)$, or
- $\operatorname{content}(b)=\operatorname{content}(a)+1$ and $a \in \nu_{(i)}, b \in \nu_{(j)}$ with $i>j$.

$$
\nu=\binom{\square, \square}{\square}
$$

			b_{3} b_{6} b_{5} b_{8} b_{1} b_{2} $b_{4}$$b_{7}$	

Attacking pairs: $\left(b_{2}, b_{3}\right),\left(b_{3}, b_{4}\right),\left(b_{4}, b_{5}\right),\left(b_{4}, b_{6}\right),\left(b_{5}, b_{7}\right),\left(b_{6}, b_{7}\right),\left(b_{7}, b_{8}\right)$

Key Object: LLT Polynomials

Let $\boldsymbol{\nu}=\left(\nu_{(1)}, \ldots, \nu_{(k)}\right)$ be a tuple of skew shapes. (Skew shape $=\lambda \backslash \mu$)

- The content of a box in row y, column x is $x-y$.
- Reading order: label boxes b_{1}, \ldots, b_{n} by scanning each diagonal from southwest to northeast, in order of increasing content.
- A pair $(a, b) \in \boldsymbol{\nu}$ is attacking if a precedes b in reading order and
- content $(b)=\operatorname{content}(a)$, or
- $\operatorname{content}(b)=\operatorname{content}(a)+1$ and $a \in \nu_{(i)}, b \in \nu_{(j)}$ with $i>j$.

$$
\nu=\binom{\square, \square}{\square}
$$

			b_{3} b_{6} b_{5} b_{8} b_{1} b_{2} b_{4} 	

Attacking pairs: $\left(b_{2}, b_{3}\right),\left(b_{3}, b_{4}\right),\left(b_{4}, b_{5}\right),\left(b_{4}, b_{6}\right),\left(b_{5}, b_{7}\right),\left(b_{6}, b_{7}\right),\left(b_{7}, b_{8}\right)$

LLT Polynomials

- A semistandard tableau on $\boldsymbol{\nu}$ is a map $T: \nu \rightarrow \mathbb{Z}_{+}$which restricts to a semistandard tableau on each $\nu_{(i)}$.
- An attacking inversion in T is an attacking pair (a, b) such that $T(a)>T(b)$.
The LLT polynomial indexed by a tuple of skew shapes ν is

$$
\mathcal{G}_{\nu}(\boldsymbol{x} ; q)=\sum_{T \in \operatorname{SSYT}(\nu)} q^{\operatorname{inv}(T) \boldsymbol{x}^{T},}
$$

where $\operatorname{inv}(T)$ is the number of attacking inversions in T and $\boldsymbol{x}^{T}=\prod_{a \in \nu} x_{T(a)}$.

LLT Polynomials

- A semistandard tableau on $\boldsymbol{\nu}$ is a map $T: \nu \rightarrow \mathbb{Z}_{+}$which restricts to a semistandard tableau on each $\nu_{(i)}$.
- An attacking inversion in T is an attacking pair (a, b) such that $T(a)>T(b)$.
The LLT polynomial indexed by a tuple of skew shapes ν is

$$
\mathcal{G}_{\nu}(\boldsymbol{x} ; q)=\sum_{T \in \operatorname{SSYT}(\nu)} q^{\operatorname{inv}(T) \boldsymbol{x}^{T},}
$$

where $\operatorname{inv}(T)$ is the number of attacking inversions in T and $\boldsymbol{x}^{T}=\prod_{a \in \nu} x_{T(a)}$.

LLT Polynomials

- A semistandard tableau on $\boldsymbol{\nu}$ is a map $T: \nu \rightarrow \mathbb{Z}_{+}$which restricts to a semistandard tableau on each $\nu_{(i)}$.
- An attacking inversion in T is an attacking pair (a, b) such that $T(a)>T(b)$.
The LLT polynomial indexed by a tuple of skew shapes ν is

$$
\mathcal{G}_{\nu}(\boldsymbol{x} ; q)=\sum_{T \in \operatorname{SSYT}(\nu)} q^{\operatorname{inv}(T) \boldsymbol{x}^{T},}
$$

where $\operatorname{inv}(T)$ is the number of attacking inversions in T and $\boldsymbol{x}^{T}=\prod_{a \in \nu} x_{T(a)}$.

LLT Polynomials

- A semistandard tableau on $\boldsymbol{\nu}$ is a map $T: \nu \rightarrow \mathbb{Z}_{+}$which restricts to a semistandard tableau on each $\nu_{(i)}$.
- An attacking inversion in T is an attacking pair (a, b) such that $T(a)>T(b)$.
The LLT polynomial indexed by a tuple of skew shapes ν is

$$
\mathcal{G}_{\nu}(\boldsymbol{x} ; q)=\sum_{T \in \operatorname{SSYT}(\nu)} q^{\operatorname{inv}(T) \boldsymbol{x}^{T},}
$$

where $\operatorname{inv}(T)$ is the number of attacking inversions in T and $\boldsymbol{x}^{T}=\prod_{a \in \nu} x_{T(a)}$.

LLT Polynomials

- A semistandard tableau on $\boldsymbol{\nu}$ is a map $T: \nu \rightarrow \mathbb{Z}_{+}$which restricts to a semistandard tableau on each $\nu_{(i)}$.
- An attacking inversion in T is an attacking pair (a, b) such that $T(a)>T(b)$.
The LLT polynomial indexed by a tuple of skew shapes ν is

$$
\mathcal{G}_{\nu}(\boldsymbol{x} ; q)=\sum_{T \in \operatorname{SSYT}(\nu)} q^{\operatorname{inv}(T) \boldsymbol{x}^{T},}
$$

where $\operatorname{inv}(T)$ is the number of attacking inversions in T and $\boldsymbol{x}^{T}=\prod_{a \in \nu} x_{T(a)}$.

LLT Polynomials

- A semistandard tableau on $\boldsymbol{\nu}$ is a map $T: \nu \rightarrow \mathbb{Z}_{+}$which restricts to a semistandard tableau on each $\nu_{(i)}$.
- An attacking inversion in T is an attacking pair (a, b) such that $T(a)>T(b)$.
The LLT polynomial indexed by a tuple of skew shapes ν is

$$
\mathcal{G}_{\nu}(\boldsymbol{x} ; q)=\sum_{T \in \operatorname{SSYT}(\nu)} q^{\operatorname{inv}(T) \boldsymbol{x}^{T},}
$$

where $\operatorname{inv}(T)$ is the number of attacking inversions in T and $\boldsymbol{x}^{T}=\prod_{a \in \nu} x_{T(a)}$.

LLT Polynomials

- A semistandard tableau on $\boldsymbol{\nu}$ is a map $T: \nu \rightarrow \mathbb{Z}_{+}$which restricts to a semistandard tableau on each $\nu_{(i)}$.
- An attacking inversion in T is an attacking pair (a, b) such that $T(a)>T(b)$.
The LLT polynomial indexed by a tuple of skew shapes ν is

$$
\mathcal{G}_{\nu}(\boldsymbol{x} ; q)=\sum_{T \in \operatorname{SSYT}(\nu)} q^{\operatorname{inv}(T) \boldsymbol{x}^{T},}
$$

where $\operatorname{inv}(T)$ is the number of attacking inversions in T and $\boldsymbol{x}^{T}=\prod_{a \in \nu} x_{T(a)}$.

LLT Polynomials

- A semistandard tableau on $\boldsymbol{\nu}$ is a map $T: \nu \rightarrow \mathbb{Z}_{+}$which restricts to a semistandard tableau on each $\nu_{(i)}$.
- An attacking inversion in T is an attacking pair (a, b) such that $T(a)>T(b)$.
The LLT polynomial indexed by a tuple of skew shapes ν is

$$
\mathcal{G}_{\nu}(\boldsymbol{x} ; q)=\sum_{T \in \operatorname{SSYT}(\nu)} q^{\operatorname{inv}(T) \boldsymbol{x}^{T},}
$$

where $\operatorname{inv}(T)$ is the number of attacking inversions in T and $\boldsymbol{x}^{T}=\prod_{a \in \nu} x_{T(a)}$.

LLT Polynomials $\mathcal{G}_{\nu}(X ; q)$

- $\mathcal{G}_{\nu}(X ; q)$ is a symmetric function

LLT Polynomials $\mathcal{G}_{\nu}(X ; q)$

- $\mathcal{G}_{\nu}(X ; q)$ is a symmetric function
- $\mathcal{G}_{\nu}(X ; 1)=s_{\nu^{(1)}} \cdots s_{\nu}(r)$

LLT Polynomials $\mathcal{G}_{\nu}(X ; q)$

- $\mathcal{G}_{\nu}(X ; q)$ is a symmetric function
- $\mathcal{G}_{\nu}(X ; 1)=s_{\nu^{(1)}} \cdots s_{\nu}(r)$
- \mathcal{G}_{ν} were originally defined by Lascoux, Leclerc, and Thibon to explore connections to Fock space representations of $U_{q}\left(\hat{\mathfrak{s}}_{r}\right)$

LLT Polynomials $\mathcal{G}_{\nu}(X ; q)$

- $\mathcal{G}_{\nu}(X ; q)$ is a symmetric function
- $\mathcal{G}_{\nu}(X ; 1)=s_{\nu^{(1)}} \cdots s_{\nu(r)}$
- \mathcal{G}_{ν} were originally defined by Lascoux, Leclerc, and Thibon to explore connections to Fock space representations of $U_{q}\left(\hat{\mathfrak{s}}_{r}\right)$
- When $\nu^{(i)}$ are partitions, the Schur-expansion coefficients are essentially parabolic Kazdhan-Luzstig polynomials.

LLT Polynomials $\mathcal{G}_{\nu}(X ; q)$

- $\mathcal{G}_{\nu}(X ; q)$ is a symmetric function
- $\mathcal{G}_{\nu}(X ; 1)=s_{\nu^{(1)}} \cdots s_{\nu(r)}$
- \mathcal{G}_{ν} were originally defined by Lascoux, Leclerc, and Thibon to explore connections to Fock space representations of $U_{q}\left(\hat{\mathfrak{s}}_{r}\right)$
- When $\nu^{(i)}$ are partitions, the Schur-expansion coefficients are essentially parabolic Kazdhan-Luzstig polynomials.
- \mathcal{G}_{ν} is Schur-positive for any tuple of skew shapes $\boldsymbol{\nu}$ [Grojnowski-Haiman, 2007].

A Combinatorial Connection: Shuffle Theorem

Theorem (Carlsson-Mellit, 2018)

$$
\nabla e_{k}(X)=\sum_{\lambda} t^{\operatorname{area}(\lambda)} q^{\operatorname{dinv}(\lambda)} \omega \mathcal{G}_{\nu(\lambda)}\left(X ; q^{-1}\right)
$$

- Conjectured by (Haiman-Haglund-Loehr-Remmel-Ulyanov, 2002).
- Combinatorial RHS: Combinatorics of Dyck paths.
- Summation over all k-by- k Dyck paths.

A Combinatorial Connection: Shuffle Theorem

Theorem (Carlsson-Mellit, 2018)

$$
\nabla e_{k}(X)=\sum_{\lambda} t^{\operatorname{area}(\lambda)} q^{\operatorname{dinv}(\lambda)} \omega \mathcal{G}_{\nu(\lambda)}\left(X ; q^{-1}\right)
$$

- Conjectured by (Haiman-Haglund-Loehr-Remmel-Ulyanov, 2002).
- Combinatorial RHS: Combinatorics of Dyck paths.
- Summation over all k-by- k Dyck paths.
- area (λ) and $\operatorname{dinv}(\lambda)$ statistics of Dyck paths.

A Combinatorial Connection: Shuffle Theorem

Theorem (Carlsson-Mellit, 2018)

$$
\nabla e_{k}(X)=\sum_{\lambda} t^{\operatorname{area}(\lambda)} q^{\operatorname{dinv}(\lambda)} \omega \mathcal{G}_{\nu(\lambda)}\left(X ; q^{-1}\right)
$$

- Conjectured by (Haiman-Haglund-Loehr-Remmel-Ulyanov, 2002).
- Combinatorial RHS: Combinatorics of Dyck paths.
- Summation over all k-by- k Dyck paths.
- area (λ) and $\operatorname{dinv}(\lambda)$ statistics of Dyck paths.
- $\mathcal{G}_{\nu(\lambda)}(X ; q)$ a symmetric LLT polynomial indexed by a tuple of offset (skew) rows.

A Combinatorial Connection: Shuffle Theorem

Theorem (Carlsson-Mellit, 2018)

$$
\nabla e_{k}(X)=\sum_{\lambda} t^{\operatorname{area}(\lambda)} q^{\operatorname{dinv}(\lambda)} \omega \mathcal{G}_{\nu(\lambda)}\left(X ; q^{-1}\right)
$$

- Conjectured by (Haiman-Haglund-Loehr-Remmel-Ulyanov, 2002).
- Combinatorial RHS: Combinatorics of Dyck paths.
- Summation over all k-by- k Dyck paths.
- area (λ) and $\operatorname{dinv}(\lambda)$ statistics of Dyck paths.
- $\mathcal{G}_{\nu(\lambda)}(X ; q)$ a symmetric LLT polynomial indexed by a tuple of offset (skew) rows.
- ω an automorphism of symmetric functions: $\omega\left(s_{\lambda}\right)=s_{\lambda^{*}}$ for $\lambda^{*}=$ transpose of λ.

Dyck paths

Dyck paths

A Dyck path λ is a south-east lattice path lying below the line segment from $(0, k)$ to $(k, 0)$.

Dyck paths

Dyck paths

A Dyck path λ is a south-east lattice path lying below the line segment from $(0, k)$ to $(k, 0)$.

- $\operatorname{area}(\lambda)=$ number of squares above λ but below the path δ of alternating S-E steps.

Dyck paths

Dyck paths

A Dyck path λ is a south-east lattice path lying below the line segment from $(0, k)$ to $(k, 0)$.

- area $(\lambda)=$ number of squares above λ but below the path δ of alternating S-E steps.
- E.g., above $\operatorname{area}(\lambda)=10$.

Dyck paths

Dyck paths

A Dyck path λ is a south-east lattice path lying below the line segment from $(0, k)$ to $(k, 0)$.

- $\operatorname{area}(\lambda)=$ number of squares above λ but below the path δ of alternating S-E steps.
- E.g., above area $(\lambda)=10$.
- Catalan-number many Dyck paths for fixed k.

Dyck paths

Dyck paths

A Dyck path λ is a south-east lattice path lying below the line segment from $(0, k)$ to $(k, 0)$.

- area $(\lambda)=$ number of squares above λ but below the path δ of alternating S-E steps.
- E.g., above area $(\lambda)=10$.
- Catalan-number many Dyck paths for fixed k. $(1,2,5,14,42, \ldots)$

dinv

$\operatorname{dinv}(\lambda)=\#$ of balanced hooks in diagram below λ.

dinv

$\operatorname{dinv}(\lambda)=\#$ of balanced hooks in diagram below λ.

Balanced hook is given by a cell below λ satisfying

$$
\frac{\ell}{a+1}<1-\epsilon<\frac{\ell+1}{a}, \quad \epsilon \text { small. }
$$

Example ∇e_{3}

$\lambda \quad q^{\operatorname{dinv}(\lambda)} t^{\operatorname{area}(\lambda)} \quad q^{\operatorname{dinv}(\lambda)} t^{\operatorname{area}(\lambda)} \omega \mathcal{G}_{\nu(\lambda)}\left(X ; q^{-1}\right)$

Example ∇e_{3}

$\lambda \quad q^{\operatorname{dinv}(\lambda)} t^{\operatorname{area}(\lambda)} \quad q^{\operatorname{dinv}(\lambda)} t^{\operatorname{area}(\lambda)} \omega \mathcal{G}_{\nu(\lambda)}\left(X ; q^{-1}\right)$

Example ∇e_{3}

$\lambda \quad q^{\operatorname{dinv}(\lambda)} t^{\operatorname{area}(\lambda)} \quad q^{\operatorname{dinv}(\lambda)} t^{\operatorname{area}(\lambda)} \omega \mathcal{G}_{\nu(\lambda)}\left(X ; q^{-1}\right)$

Example ∇e_{3}

$\lambda \quad q^{\operatorname{dinv}(\lambda)} t^{\operatorname{area}(\lambda)} \quad q^{\operatorname{dinv}(\lambda)} t^{\operatorname{area}(\lambda)} \omega \mathcal{G}_{\nu(\lambda)}\left(X ; q^{-1}\right)$

q^{3}	$s_{3}+q s_{2,1}+q^{2} s_{2,1}+q^{3} s_{1,1,1}$
$q^{2} t$	$q t s_{2,1}+q^{2} t s_{1,1,1}$
$q t$	$t s_{2,1}+q t s_{1,1,1}$
$q t^{2}$	$t^{2} s_{2,1}+q t^{2} s_{1,1,1}$
t^{3}	$t^{3} s_{1,1,1}$

Example ∇e_{3}

$\lambda \quad q^{\operatorname{dinv}(\lambda)} t^{\operatorname{area}(\lambda)} \quad q^{\operatorname{dinv}(\lambda)} t^{\operatorname{area}(\lambda)} \omega \mathcal{G}_{\nu(\lambda)}\left(X ; q^{-1}\right)$

- Entire quantity is q, t-symmetric

Example ∇e_{3}

$\lambda \quad q^{\operatorname{dinv}(\lambda)} t^{\operatorname{area}(\lambda)} \quad q^{\operatorname{dinv}(\lambda)} t^{\operatorname{area}(\lambda)} \omega \mathcal{G}_{\nu(\lambda)}\left(X ; q^{-1}\right)$

q^{3} $s_{3}+q s_{2,1}+q^{2} s_{2,1}+q^{3} s_{1,1,1}$

$q^{2} t$

$$
q t s_{2,1}+q^{2} t s_{1,1,1}
$$

$q t$
$t s_{2,1}+q t s_{1,1,1}$

$$
q t^{2}
$$

$$
t^{2} s_{2,1}+q t^{2} s_{1,1,1}
$$

$$
t^{3} \quad t^{3} s_{1,1,1}
$$

- Entire quantity is q, t-symmetric
- Coefficient of $s_{1,1,1}$ in sum is a " (q, t)-Catalan number" $\left(q^{3}+q^{2} t+q t+q t^{2}+t^{3}\right)$.

Generalizing Shuffle Theorem

When a problem is too difficult, try generalizing!

Generalizing Shuffle Theorem

When a problem is too difficult, try generalizing!

$$
\begin{aligned}
\text { Algebraic Expression } & \quad \text { Combinatorial Expression } \\
\nabla e_{k}(X) & =\sum q, t \text {-weighted Dyck paths }
\end{aligned}
$$

Generalizing Shuffle Theorem

When a problem is too difficult, try generalizing!

$$
\begin{aligned}
\text { Algebraic Expression } & \quad \text { Combinatorial Expression } \\
\nabla e_{k}(X) & =\sum q, t \text {-weighted Dyck paths }
\end{aligned}
$$

Rational Shuffle Conjecture (F. Bergeron, Garsia, Sergel Leven, Xin, 2016) (Proved by Mellit, 2021)

For $m, n>0$ coprime, the operator $e_{k}\left[-M X^{m, n}\right]$ acting on Λ satisfies

$$
e_{k}\left[-M X^{m, n}\right] \cdot 1=\sum q, t \text {-weighted }(k m, k n) \text {-Dyck paths }
$$

Generalizing Shuffle Theorem

When a problem is too difficult, try generalizing!

$$
\begin{aligned}
\text { Algebraic Expression } & \quad \text { Combinatorial Expression } \\
\nabla e_{k}(X) & =\sum q, t \text {-weighted Dyck paths }
\end{aligned}
$$

Rational Shuffle Conjecture (F. Bergeron, Garsia, Sergel Leven, Xin, 2016) (Proved by Mellit, 2021)

For $m, n>0$ coprime, the operator $e_{k}\left[-M X^{m, n}\right]$ acting on Λ satisfies

$$
e_{k}\left[-M X^{m, n}\right] \cdot 1=\sum q, t \text {-weighted }(k m, k n) \text {-Dyck paths }
$$

Elliptic Hall Algebra

When one has a family of operators, can they be realized by an action of an algebra?

Elliptic Hall Algebra

When one has a family of operators, can they be realized by an action of an algebra?

Burban and Schiffmann studied a subalgebra \mathcal{E} of the Hall algebra of coherent sheaves on an elliptic curve over \mathbb{F}_{p}.

The elliptic Hall algebra \mathcal{E} is generated by subalgebras $\Lambda\left(X^{a, b}\right)$ isomorphic to the ring of symmetric functions Λ over $\mathbb{k}=\mathbb{Q}(q, t)$, one for each coprime pair $(a, b) \in \mathbb{Z}^{2}$, along with an additional central subalgebra.

Elliptic Hall Algebra

When one has a family of operators, can they be realized by an action of an algebra?

Burban and Schiffmann studied a subalgebra \mathcal{E} of the Hall algebra of coherent sheaves on an elliptic curve over \mathbb{F}_{p}.

The elliptic Hall algebra \mathcal{E} is generated by subalgebras $\Lambda\left(X^{a, b}\right)$ isomorphic to the ring of symmetric functions Λ over $\mathbb{k}=\mathbb{Q}(q, t)$, one for each coprime pair $(a, b) \in \mathbb{Z}^{2}$, along with an additional central subalgebra.
E.g., $e_{k}\left[-M X^{m, n}\right] \in \Lambda\left(X^{m, n}\right)$.
\mathcal{E} acts on symmetric functions and $e_{k}\left[-M X^{1,1}\right] \cdot 1=\nabla e_{k}$.

Elliptic Hall Algebra

When one has a family of operators, can they be realized by an action of an algebra?

Burban and Schiffmann studied a subalgebra \mathcal{E} of the Hall algebra of coherent sheaves on an elliptic curve over \mathbb{F}_{p}.

The elliptic Hall algebra \mathcal{E} is generated by subalgebras $\Lambda\left(X^{a, b}\right)$ isomorphic to the ring of symmetric functions Λ over $\mathbb{k}=\mathbb{Q}(q, t)$, one for each coprime pair $(a, b) \in \mathbb{Z}^{2}$, along with an additional central subalgebra.
E.g., $e_{k}\left[-M X^{m, n}\right] \in \Lambda\left(X^{m, n}\right)$.
\mathcal{E} acts on symmetric functions and $e_{k}\left[-M X^{1,1}\right] \cdot 1=\nabla e_{k}$.
Can be difficult to work with in general. Can we make it more explicit?

Root ideals

$R_{+}=\left\{\alpha_{i j} \mid 1 \leq i<j \leq n\right\}$ denotes the set of positive roots for $G L_{n}$, where $\alpha_{i j}=\epsilon_{i}-\epsilon_{j}$.

	12)(13)(14	14)(15
	${ }^{23)}(24$	24)(25
		4)(35

Root ideals

$R_{+}=\left\{\alpha_{i j} \mid 1 \leq i<j \leq n\right\}$ denotes the set of positive roots for $G L_{n}$, where $\alpha_{i j}=\epsilon_{i}-\epsilon_{j}$.

A root ideal $\Psi \subseteq R_{+}$is an upper order ideal of positive roots.

$$
\Psi=\text { Roots above Dyck path }
$$

Schur functions revisited

- Convention: $h_{0}=1$ and $h_{d}=0$ for $d<0$.
- For any $\gamma=\left(\gamma_{1}, \ldots, \gamma_{n}\right) \in \mathbb{Z}^{n}$, set

$$
s_{\gamma}=\operatorname{det}\left(h_{\gamma_{i}+j-i}\right)_{1 \leq i, j \leq n}
$$

Schur functions revisited

- Convention: $h_{0}=1$ and $h_{d}=0$ for $d<0$.
- For any $\gamma=\left(\gamma_{1}, \ldots, \gamma_{n}\right) \in \mathbb{Z}^{n}$, set

$$
s_{\gamma}=\operatorname{det}\left(h_{\gamma_{i}+j-i}\right)_{1 \leq i, j \leq n}
$$

Then, $s_{\gamma}= \pm s_{\lambda}$ or 0 for some partition λ.

Schur functions revisited

- Convention: $h_{0}=1$ and $h_{d}=0$ for $d<0$.
- For any $\gamma=\left(\gamma_{1}, \ldots, \gamma_{n}\right) \in \mathbb{Z}^{n}$, set

$$
s_{\gamma}=\operatorname{det}\left(h_{\gamma_{i}+j-i}\right)_{1 \leq i, j \leq n}
$$

Then, $s_{\gamma}= \pm s_{\lambda}$ or 0 for some partition λ.
Precisely, for $\rho=(n-1, n-2, \ldots, 1,0)$,

$$
s_{\gamma}= \begin{cases}\operatorname{sgn}(\gamma+\rho) s_{\mathrm{sort}}(\gamma+\rho)-\rho & \text { if } \gamma+\rho \text { has distinct nonnegative parts, } \\ 0 & \text { otherwise }\end{cases}
$$

- $\operatorname{sort}(\beta)=$ weakly decreasing sequence obtained by sorting β,
- $\operatorname{sgn}(\beta)=\operatorname{sign}$ of the shortest permutation taking β to $\operatorname{sort}(\beta)$.

Example: $s_{201}=0, s_{2-11}=-s_{200}$.

Weyl symmetrization

Define the Weyl symmetrization operator $\sigma: \mathbb{Q}\left[z_{1}^{ \pm 1}, \ldots, z_{n}^{ \pm 1}\right] \rightarrow \Lambda(X)$ by linearly extending

$$
z^{\gamma} \mapsto s_{\gamma}(X)
$$

where $\boldsymbol{z}^{\gamma}=z_{1}^{\gamma_{1}} \cdots z_{n}^{\gamma_{n}}$.

Weyl symmetrization

Define the Weyl symmetrization operator $\sigma: \mathbb{Q}\left[z_{1}^{ \pm 1}, \ldots, z_{n}^{ \pm 1}\right] \rightarrow \Lambda(X)$ by linearly extending

$$
z^{\gamma} \mapsto s_{\gamma}(X)
$$

where $\boldsymbol{z}^{\gamma}=z_{1}^{\gamma_{1}} \cdots z_{n}^{\gamma_{n}}$.

Example

$$
\sigma\left(z^{111}+z^{201}+z^{210}+z^{3-11}\right)=s_{111}+s_{201}+s_{210}+s_{3-11}=s_{111}+s_{210}-s_{300}
$$

Catalanimals

Definition

The Catalanimal indexed by $R_{q}, R_{t}, R_{q t} \subseteq R_{+}$and $\lambda \in \mathbb{Z}^{n}$ is

Catalanimals

Definition

The Catalanimal indexed by $R_{q}, R_{t}, R_{q t} \subseteq R_{+}$and $\lambda \in \mathbb{Z}^{n}$ is

$$
H\left(R_{q}, R_{t}, R_{q t}, \lambda\right)=\sigma\left(\frac{z^{\lambda} \prod_{\alpha \in R_{q t}}\left(1-q t z^{\alpha}\right)}{\prod_{\alpha \in R_{q}}\left(1-q z^{\alpha}\right) \prod_{\alpha \in R_{t}}\left(1-t z^{\alpha}\right)}\right)
$$

where $z^{\alpha_{i j}}=z_{i} / z_{j}$ and $\left(1-t z_{i} / z_{j}\right)^{-1}=1+t z_{i} / z_{j}+t^{2} z_{i}^{2} / z_{j}^{2}+\cdots$.

Catalanimals

Definition

The Catalanimal indexed by $R_{q}, R_{t}, R_{q t} \subseteq R_{+}$and $\lambda \in \mathbb{Z}^{n}$ is

$$
H\left(R_{q}, R_{t}, R_{q t}, \lambda\right)=\sigma\left(\frac{z^{\lambda} \prod_{\alpha \in R_{q t}}\left(1-q t z^{\alpha}\right)}{\prod_{\alpha \in R_{q}}\left(1-q z^{\alpha}\right) \prod_{\alpha \in R_{t}}\left(1-t z^{\alpha}\right)}\right)
$$

where $z^{\alpha_{i j}}=z_{i} / z_{j}$ and $\left(1-t z_{i} / z_{j}\right)^{-1}=1+t z_{i} / z_{j}+t^{2} z_{i}^{2} / z_{j}^{2}+\cdots$.
With $n=3$,

$$
\begin{aligned}
& H\left(R_{+}, R_{+},\left\{\alpha_{13}\right\},(111)\right)=\sigma\left(\frac{z^{111}\left(1-q t z_{1} / z_{3}\right)}{\prod_{1 \leq i<j \leq 3}\left(1-q z_{i} / z_{j}\right)\left(1-t z_{i} / z_{j}\right)}\right) \\
& =s_{111}+\left(q+t+q^{2}+q t+t^{2}\right) s_{21}+\left(q t+q^{3}+q^{2} t+q t^{2}+t^{3}\right) s_{3} \\
& =\omega \nabla e_{3} .
\end{aligned}
$$

Why?

$$
\text { Let } R_{+}=\left\{\alpha_{i j} \mid 1 \leq i<j \leq I\right\} \text { and } R_{+}^{0}=\left\{\alpha_{i j} \in R_{+} \mid i+1<j\right\}
$$

Why?

$$
\text { Let } R_{+}=\left\{\alpha_{i j} \mid 1 \leq i<j \leq I\right\} \text { and } R_{+}^{0}=\left\{\alpha_{i j} \in R_{+} \mid i+1<j\right\} .
$$

Proposition

For $(m, n) \in \mathbb{Z}^{2}$ coprime,

$$
e_{k}\left[-M X^{m, n}\right] \cdot 1=H\left(R_{+}, R_{+}, R_{+}^{0}, \mathbf{b}\right)
$$

for $\mathbf{b}=\left(b_{0}, \ldots, b_{k m-1}\right)$ satisfying $b_{i}=$ the number of south steps on vertical line $x=i$ of highest lattice path under line $y+\frac{n}{m} x=n$.
$\delta=$ highest Dyck path.

$$
\mathbf{b}=(1,1,0,1,0,1,0,1,0,1,0)
$$

Results

Manipulating Catalanimal \Longrightarrow a proof of the Rational Shuffle Theorem + a generalization.

Theorem (Blasiak-Haiman-Morse-Pun-S., 2023a)

Given $r, s \in \mathbb{R}_{>0}$ such that $p=s / r$ irrational, take $\mathbf{b}=\left(b_{1}, \ldots, b_{l}\right) \in \mathbb{Z}^{\prime}$ to be the south step sequence of highest path δ under the line $y+p x=s$.

Results

Manipulating Catalanimal \Longrightarrow a proof of the Rational Shuffle Theorem + a generalization.

Theorem (Blasiak-Haiman-Morse-Pun-S., 2023a)

Given $r, s \in \mathbb{R}_{>0}$ such that $p=s / r$ irrational, take $\mathbf{b}=\left(b_{1}, \ldots, b_{l}\right) \in \mathbb{Z}^{\prime}$ to be the south step sequence of highest path δ under the line $y+p x=s$.

$$
H\left(R_{+}, R_{+}, R_{+}^{0}, \mathbf{b}\right)
$$

Results

Manipulating Catalanimal \Longrightarrow a proof of the Rational Shuffle Theorem + a generalization.

Theorem (Blasiak-Haiman-Morse-Pun-S., 2023a)

Given $r, s \in \mathbb{R}_{>0}$ such that $p=s / r$ irrational, take $\mathbf{b}=\left(b_{1}, \ldots, b_{l}\right) \in \mathbb{Z}^{\prime}$ to be the south step sequence of highest path δ under the line $y+p x=s$.

$$
H\left(R_{+}, R_{+}, R_{+}^{0}, \mathbf{b}\right)=
$$

Results

Manipulating Catalanimal \Longrightarrow a proof of the Rational Shuffle Theorem + a generalization.

Theorem (Blasiak-Haiman-Morse-Pun-S., 2023a)

Given $r, s \in \mathbb{R}_{>0}$ such that $p=s / r$ irrational, take $\mathbf{b}=\left(b_{1}, \ldots, b_{l}\right) \in \mathbb{Z}^{\prime}$ to be the south step sequence of highest path δ under the line $y+p x=s$.

$$
H\left(R_{+}, R_{+}, R_{+}^{0}, \mathbf{b}\right)=\sum_{\lambda} \quad \omega \mathcal{G}_{\nu(\lambda)}\left(X ; q^{-1}\right)
$$

where summation is over all lattice paths under the line $y+p x=s$,

Results

Manipulating Catalanimal \Longrightarrow a proof of the Rational Shuffle Theorem + a generalization.

Theorem (Blasiak-Haiman-Morse-Pun-S., 2023a)

Given $r, s \in \mathbb{R}_{>0}$ such that $p=s / r$ irrational, take $\mathbf{b}=\left(b_{1}, \ldots, b_{l}\right) \in \mathbb{Z}^{\prime}$ to be the south step sequence of highest path δ under the line $y+p x=s$.

$$
H\left(R_{+}, R_{+}, R_{+}^{0}, \mathbf{b}\right)=\sum_{\lambda} t^{\operatorname{area}(\lambda)} q^{\operatorname{dinv}_{p}(\lambda)} \omega \mathcal{G}_{\nu(\lambda)}\left(X ; q^{-1}\right)
$$

where summation is over all lattice paths under the line $y+p x=s$,

$\operatorname{area}(\lambda)$ as before $\operatorname{dinv}_{p}(\lambda)=\# p$-balanced hooks $\frac{\ell}{a+1}<p<\frac{\ell+1}{a}$

A Question

Why stop at $e_{k}\left[-M X^{m, n}\right]$?

A Question

Why stop at $e_{k}\left[-M X^{m, n}\right]$?
For which symmetric functions f can we find a Catalanimal such that $f\left[-M X^{m, n}\right] \cdot 1=$ a Catalanimal?

A Question

Why stop at $e_{k}\left[-M X^{m, n}\right]$?
For which symmetric functions f can we find a Catalanimal such that $f\left[-M^{m, n}\right] \cdot 1=$ a Catalanimal?

Answer: for f equal to any LLT polynomial!

A Question

Why stop at $e_{k}\left[-M X^{m, n}\right]$?
For which symmetric functions f can we find a Catalanimal such that $f\left[-M X^{m, n}\right] \cdot 1=$ a Catalanimal?

Answer: for f equal to any LLT polynomial!
Special case: $\mathcal{G}_{\nu}\left[-M X^{1,1}\right] \cdot 1=\nabla \mathcal{G}_{\nu}(X ; q)$.

LLT Catalanimals

For a tuple of skew shapes $\boldsymbol{\nu}$, the LLT Catalanimal $H_{\nu}=H\left(R_{q}, R_{t}, R_{q t}, \lambda\right)$ is determined by

- $R_{+} \supseteq R_{q} \supseteq R_{t} \supseteq R_{q t}$,

LLT Catalanimals

For a tuple of skew shapes $\boldsymbol{\nu}$, the LLT Catalanimal $H_{\nu}=H\left(R_{q}, R_{t}, R_{q t}, \lambda\right)$ is determined by

- $R_{+} \supseteq R_{q} \supseteq R_{t} \supseteq R_{q t}$,
- $R_{+} \backslash R_{q}=$ pairs of boxes in the same diagonal in the same shape,
- $R_{q} \backslash R_{t}=$ the attacking pairs,
- $R_{t} \backslash R_{q t}=$ pairs going between adjacent diagonals,

LLT Catalanimals

For a tuple of skew shapes $\boldsymbol{\nu}$, the LLT Catalanimal $H_{\nu}=H\left(R_{q}, R_{t}, R_{q t}, \lambda\right)$ is determined by

- $R_{+} \supseteq R_{q} \supseteq R_{t} \supseteq R_{q t}$,
- $R_{+} \backslash R_{q}=$ pairs of boxes in the same diagonal in the same shape,
- $R_{q} \backslash R_{t}=$ the attacking pairs,
- $R_{t} \backslash R_{q t}=$ pairs going between adjacent diagonals,
- λ : fill each diagonal D of ν with $1+\chi(D$ contains a row start $)-\chi(D$ contains a row end $)$. Listing this filling in reading order gives λ.

LLT Catalanimals

$\square R_{+} \backslash R_{q}=$ pairs of boxes in the same diagonal, $R_{q} \backslash R_{t}=$ the attacking pairs,

- $R_{t} \backslash R_{q t}=$ pairs going between adjacent diagonals, $R_{q t}=$ all other pairs,
λ : fill each diagonal D of ν with
$1+\chi(D$ contains a row start $)-\chi(D$ contains a row end $)$.

ν

LLT Catalanimals

$\square R_{+} \backslash R_{q}=$ pairs of boxes in the same diagonal, $R_{q} \backslash R_{t}=$ the attacking pairs,

- $R_{t} \backslash R_{q t}=$ pairs going between adjacent diagonals, $R_{q t}=$ all other pairs,
λ : fill each diagonal D of ν with
$1+\chi(D$ contains a row start $)-\chi(D$ contains a row end $)$.

λ, as a filling of ν

LLT Catalanimals

Theorem (Blasiak-Haiman-Morse-Pun-S., 2021+)

Let $\boldsymbol{\nu}$ be a tuple of skew shapes and let $H_{\nu}=H\left(R_{q}, R_{t}, R_{q t}, \lambda\right)$ be the associated LLT Catalanimal. Then

$$
\begin{aligned}
\nabla \mathcal{G}_{\nu}(X ; q) & =c_{\nu} \omega H_{\nu} \\
& =c_{\nu} \omega \sigma\left(\frac{z^{\lambda} \prod_{\alpha \in R_{q t}}\left(1-q t \boldsymbol{z}^{\alpha}\right)}{\prod_{\alpha \in R_{q}}\left(1-q z^{\alpha}\right) \prod_{\alpha \in R_{t}}\left(1-t \boldsymbol{z}^{\alpha}\right)}\right)
\end{aligned}
$$

for some $c_{\nu} \in \pm q^{\mathbb{Z}} t^{\mathbb{Z}}$.

What about Macdonald polynomials?!

- Remember $\nabla \tilde{H}_{\mu}=q^{n(\mu)} t^{n\left(\mu^{*}\right)} \tilde{H}_{\mu}$.

What about Macdonald polynomials?!

- Remember $\nabla \tilde{H}_{\mu}=q^{n(\mu)} t^{n\left(\mu^{*}\right)} \tilde{H}_{\mu}$.
- We have a formula for $\nabla \mathcal{G}_{\nu}$.

What about Macdonald polynomials?!

- Remember $\nabla \tilde{H}_{\mu}=q^{n(\mu)} t^{n\left(\mu^{*}\right)} \tilde{H}_{\mu}$.
- We have a formula for $\nabla \mathcal{G}_{\nu}$.
- Does there exist formula $\tilde{H}_{\mu}=\sum_{\nu} a_{\mu \nu}(q, t) \mathcal{G}_{\nu}$?

What about Macdonald polynomials?!

- Remember $\nabla \tilde{H}_{\mu}=q^{n(\mu)} t^{n\left(\mu^{*}\right)} \tilde{H}_{\mu}$.
- We have a formula for $\nabla \mathcal{G}_{\nu}$.
- Does there exist formula $\tilde{H}_{\mu}=\sum_{\nu} a_{\mu \nu}(q, t) \mathcal{G}_{\nu}$? Yes!

Outline

(1) Background on symmetric functions and Macdonald polynomials
(2) Shuffle theorems, combinatorics, and LLT polynomials
(3) A new formula for Macdonald polynomials

Haglund-Haiman-Loehr formula example

$$
\tilde{H}_{\mu}(X ; q, t)=\sum_{D}\left(\Pi_{u \in D} q^{-\operatorname{arm}(\omega)} t^{\operatorname{leg}(u)+1}\right) \mathcal{G}_{\nu(\mu, D)}(X ; q)
$$

Haglund-Haiman-Loehr formula example

$$
\tilde{H}_{\mu}(X ; q, t)=\sum_{D}\left(\prod_{u \in D} q^{-\operatorname{arm}(\omega)} t^{\operatorname{leg}(\omega)+1}\right) \mathcal{G}_{\nu(\mu, D)}(X ; q)
$$

b_{1}	
b_{2}	b_{3}
b_{4}	b_{5}
μ	

$$
\begin{aligned}
& \begin{array}{l:l}
\frac{1}{2} \\
\frac{3}{4} & q^{-1} t^{4}
\end{array} \\
& \begin{array}{c}
\frac{3}{4} \\
\frac{1}{4} \\
q^{-1} t^{3}
\end{array} \\
& D=\left\{b_{2}, b_{3}\right\} \\
& D=\left\{b_{1}, b_{2}\right\} \\
& D=\left\{b_{1}, b_{3}\right\} \\
& 35 \\
& \frac{12^{2}}{4} q^{\prime} q^{-1} t^{2}
\end{aligned}
$$

Putting it all together

- Take HHL formula $\tilde{H}_{\mu}=\sum_{D} a_{\mu, D} \mathcal{G}_{\nu(\mu, D)}$ and apply $\omega \nabla$.

Putting it all together

- Take HHL formula $\tilde{H}_{\mu}=\sum_{D} a_{\mu, D} \mathcal{G}_{\boldsymbol{\nu}(\mu, D)}$ and apply $\omega \nabla$.
- By construction, all the LLT Catalanimals $H_{\nu(\mu, D)}$ appearing on the RHS will have the same root ideal data $\left(R_{q}, R_{t}, R_{q t}\right)$.

Putting it all together

- Take HHL formula $\tilde{H}_{\mu}=\sum_{D} a_{\mu, D} \mathcal{G}_{\nu(\mu, D)}$ and apply $\omega \nabla$.
- By construction, all the LLT Catalanimals $H_{\nu(\mu, D)}$ appearing on the RHS will have the same root ideal data $\left(R_{q}, R_{t}, R_{q t}\right)$.
- Collect terms to get $\prod_{\left(b_{i}, b_{j}\right) \in V(\mu)}\left(1-q^{\operatorname{arm}\left(b_{i}\right)+1} t^{-\operatorname{leg}\left(b_{i}\right)} z_{i} / z_{j}\right)$ factor for $V(\mu)$ the set of vertical dominoes $\left(b_{i}, b_{j}\right)$ in μ.

$$
\tilde{H}_{\mu}=\omega \boldsymbol{\sigma}\left(z_{1} \cdots z_{n} \frac{\prod_{\alpha_{i j} \in V(\mu)}\left(1-q^{\operatorname{arm}\left(b_{i}\right)+1} t^{-\operatorname{leg}\left(b_{i}\right)} z_{i} / z_{j}\right) \prod_{\alpha \in \widehat{R}_{\mu}}\left(1-q t \boldsymbol{z}^{\alpha}\right)}{\prod_{\alpha \in R_{+}}\left(1-q \boldsymbol{z}^{\alpha}\right) \prod_{\alpha \in R_{\mu}}\left(1-t \boldsymbol{z}^{\alpha}\right)}\right) .
$$

The root ideal R_{μ}

$$
\begin{array}{r}
\begin{array}{|l|l|}
& \\
\hline b_{4} & b_{5}
\end{array} b_{6} \\
\hline b_{7} \\
b_{8}
\end{array} b_{9} \begin{aligned}
& \text { row reading order } \\
& b_{1} \prec b_{2} \prec \cdots \prec b_{n}
\end{aligned}
$$

Example:

$$
\begin{aligned}
& R_{\mu}:=\left\{\alpha_{i j} \in R_{+} \mid \operatorname{south}\left(b_{i}\right) \preceq b_{j}\right\}, \\
& \widehat{R}_{\mu}:=\left\{\alpha_{i j} \in R_{+} \mid \operatorname{south}\left(b_{i}\right) \prec b_{j}\right\}, \\
& R_{\mu} \backslash \widehat{R}_{\mu} \leftrightarrow V(\mu)
\end{aligned}
$$

The root ideal R_{μ}

b_{1}		
b_{2}	b_{3}	
b_{4}	b_{5}	b_{6}
b_{7}	b_{8}	b_{9}

row reading order

$$
b_{1} \prec b_{2} \prec \cdots \prec b_{n}
$$

Example:

$$
R_{3321}=
$$

$$
\begin{aligned}
& R_{\mu}:=\left\{\alpha_{i j} \in R_{+} \mid \operatorname{south}\left(b_{i}\right) \preceq b_{j}\right\}, \\
& \widehat{R}_{\mu}:=\left\{\alpha_{i j} \in R_{+} \mid \operatorname{south}\left(b_{i}\right) \prec b_{j}\right\}, \\
& R_{\mu} \backslash \widehat{R}_{\mu} \leftrightarrow V(\mu)
\end{aligned}
$$

Remark

$$
\tilde{H}_{\mu}(X ; 0, t)=\omega \boldsymbol{\sigma}\left(\frac{z_{1} \cdots z_{n}}{\prod_{\alpha \in R_{\mu}}\left(1-t z^{\alpha}\right)}\right)
$$

Example

Example

$1-q \frac{z_{1}}{z_{2}}$	
$1-q t^{-1} \frac{z_{2}}{z_{3}}$	
$1-q^{2} t^{-2} \frac{z_{3}}{z_{5}}$	$1-q \frac{z_{4}}{z_{6}}$
$1-q^{2} t^{-3} \frac{z_{5}}{z_{7}}$	$1-q t^{-1} \frac{z_{6}}{z_{8}}$

1
\tilde{H}_{22211}
numerator factors $1-q^{\mathrm{arm}+1} t^{-\operatorname{leg}} z_{i} / z_{j}$

$q=t=1$ specialization

$$
\begin{aligned}
& \omega \sigma\left(z_{1}^{\cdots z_{n}} \frac{\prod_{\alpha_{j} \in R_{\mu} \backslash \hat{R}_{\mu}}\left(1-q^{a \operatorname{arm}\left(b_{i}\right)+1} t^{-\operatorname{leg}\left(b_{i}\right)} z_{i} / z_{j}\right)}{\prod_{\alpha \in \mathcal{R}_{\mu}}\left(1-q t z^{\alpha}\right)}{ }_{\alpha \in R_{+}}\left(1-q z^{\alpha}\right) \prod_{\alpha \in \mathcal{R}_{\mu}}\left(1-t z^{\alpha}\right) \quad\right) \\
& \xrightarrow{q=t=1} \omega \sigma\left(z_{1} \cdots z_{n} \frac{\prod_{\alpha \in R_{\mu} \backslash \hat{R}_{\mu}}\left(1-z^{\alpha}\right) \prod_{\alpha \in \hat{R}_{R}}\left(1-z^{\alpha}\right)}{\prod_{\alpha \in R_{+}}\left(1-z^{\alpha}\right) \prod_{\alpha \in R_{\mu}}\left(1-z^{\alpha}\right)}\right) \\
& =\omega \sigma\left(\frac{z_{1} \cdots z_{n}}{\prod_{a \in R_{+}}\left(1-z^{\alpha}\right)}\right) \\
& =\omega h_{1}^{n} \\
& =e_{1}^{n}
\end{aligned}
$$

A positivity conjecture

What can this formula tell us that other formulas for Macdonald polynomials do not?

A positivity conjecture

What can this formula tell us that other formulas for Macdonald polynomials do not?

$$
\left.\tilde{H}_{\mu}^{(s)}:=\omega \boldsymbol{\sigma}\left(z_{1} \cdots z_{n}\right)^{s} \frac{\prod_{\alpha_{i j} \in R_{\mu} \backslash \widehat{R}_{\mu}}\left(1-q^{\operatorname{arm}\left(b_{i}\right)+1} t^{-\operatorname{leg}\left(b_{i}\right)} z_{i} / z_{j}\right) \prod_{\alpha \in \widehat{R}_{\mu}}\left(1-q t z^{\alpha}\right)}{\prod_{\alpha \in R_{+}}\left(1-q z^{\alpha}\right) \prod_{\alpha \in R_{\mu}}\left(1-t z^{\alpha}\right)}\right)
$$

Conjecture (Blasiak-Haiman-Morse-Pun-S.)

For any partition μ and positive integer s, the symmetric function $\tilde{H}_{\mu}^{(s)}$ is Schur positive. That is, the coefficients in

$$
\tilde{H}_{\mu}^{(s)}=\sum_{\nu} K_{\nu, \mu}^{(s)}(q, t) s_{\nu}(X)
$$

satisfy $K_{\nu, \mu}^{(s)}(q, t) \in \mathbb{N}[q, t]$.

Symmetric functions, representation theory, and combinatorics

Symmetric function	Representation theory	Combinatorics
$s_{\lambda}(X)$	Irreducible V_{λ}	$\operatorname{SSYT}(\lambda)$
$\tilde{H}_{\lambda}(X ; q, t)$	Garsia-Haiman M_{λ}	HHL
∇e_{n}	$D H_{n}$	Shuffle theorem
$\tilde{H}_{\lambda}^{(s)}(X ; q, t)$	$? ?$	$? ?$

Thank you!

Blasiak, Jonah, Mark Haiman, Jennifer Morse, Anna Pun, and George H. Seelinger. 2023/ed. A Shuffle Theorem for Paths Under Any Line, Forum of Mathematics, Pi 11, e5, DOI 10.1017/fmp.2023.4.
\qquad 2021. LLT Polynomials in the Schiffmann Algebra, arXiv e-prints, arXiv:2112.07063.
__ 2023. A Raising Operator Formula for Macdonald Polynomials, arXiv e-prints, arXiv:2307.06517.
Burban, Igor and Olivier Schiffmann. 2012. On the Hall algebra of an elliptic curve, I, Duke Math. J. 161, no. 7, 1171-1231, DOI 10.1215/00127094-1593263. MR2922373
Carlsson, Erik and Mellit, Anton. 2018. A Proof of the Shuffle Conjecture 31, no. 3, 661-697, DOI 10.1090/jams/893.
Feigin, B. L. and Tsymbaliuk, A. I. 2011. Equivariant K-theory of Hilbert Schemes via Shuffle Algebra, Kyoto J. Math. 51, no. 4, 831-854.
Garsia, Adriano M. and Mark Haiman. 1993. A graded representation model for Macdonald's polynomials, Proc. Nat. Acad. Sci. U.S.A. 90, no. 8, 3607-3610, DOI 10.1073/pnas.90.8.3607. MR1214091

Haglund, J., M. Haiman, and N. Loehr. 2005. A Combinatorial Formula for Macdonald Polynomials 18, no. 3, 735-761 (electronic).
Haglund, J. and Haiman, M. and Loehr. 2005. A combinatorial formula for the character of the diagonal coinvariants, Duke Math. J. 126, no. 2, 195-232, DOI 10.1215/S0012-7094-04-12621-1.

Haiman, Mark. 2001. Hilbert schemes, polygraphs and the Macdonald positivity conjecture, J. Amer. Math. Soc. 14, no. 4, 941-1006, DOI 10.1090/S0894-0347-01-00373-3. MR1839919
\qquad . 2002. Vanishing theorems and character formulas for the Hilbert scheme of points in the plane, Invent. Math. 149, no. 2, 371-407, DOI 10.1007/s002220200219. MR1918676
Lascoux, Alain, Bernard Leclerc, and Jean-Yves Thibon. 1995. Ribbon tableaux, Hall-Littlewood functions and unipotent varieties, Sém. Lothar. Combin. 34, Art. B34g, approx. 23. MR1399754 Mellit, Anton. 2021. Toric Braids and (m,n)-Parking Functions, Duke Math. J. 170, no. 18, 4123-4169, DOI 10.1215/00127094-2021-0011.
Negut, Andrei. 2014. The shuffle algebra revisited, Int. Math. Res. Not. IMRN 22, 6242-6275, DOI $10.1093 / \mathrm{imrn} / \mathrm{rnt156}$. MR3283004
Schiffmann, Olivier and Vasserot, Eric. 2013. The Elliptic Hall Algebra and the K-theory of the Hilbert Scheme of A2, Duke Mathematical Journal 162, no. 2, 279-366, DOI
10.1215/00127094-1961849.

