Canonical idempotents of multiplicity-free families of algebras

Abstract: Any multiplicity-free family of finite dimensional algebras has a canonical complete set of pairwise orthogonal primitive idempotents in each level. We give various methods to compute these idempotents. In the case of symmetric group algebras over a field of characteristic zero, the set of canonical idempotents is precisely the set of seminormal idempotents constructed by Young. As an example, we calculate the canonical idempotents for semisimple Brauer algebras.

This paper was published in the journal L’Enseignment Mathematique in the 2018 edition (tome 64).

Date published: Thursday, May 23, 2019